K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề sai à 

sửa đề 

\(A=1+2+2^2+2^3+2^4+.....+2^{2008}\)

Chứng minh \(A=2^{2009}-1\)

Giải :

\(A=1+2+2^2+2^3+.....+2^{2008}\)

\(2A=2+2^2+2^3+...+2^{2009}\)

\(2A-A=2^{2009}-1\)

\(\Rightarrow A=2^{2009}-1\left(dpcm\right)\)

Study well 

uk

đề sai ^^

Cho A = 1 + 2 + 22 + 2+ 24 +.....+22007
Chứng minh : A = 22008 - 1

bn sửa đề gần đúng =))))

thôi thì mơn nhoa

9 tháng 4 2019

24 tháng 8 2019

A = 1 + 2 + 2 2 + . . . + 2 2007

2 A = 2 + 2 2 + . . . + 2 2007 + 2 2008

A = 2A - A =  ( 2 + 2 2 + . . . + 2 2007 + 2 2008 ) - ( 1 + 2 + 2 2 + . . . + 2 2007 ) =  2 2008 - 1

Vậy  A = 2 2008 - 1

30 tháng 4 2021

Đặt A=1+2+22+...+220081+2+22+...+22008

=>2A=2.(1+2+22+...+220081+2+22+...+22008)

=>2A=2+22+23+...+220092+22+23+...+22009

=>2A-A=(2+22+23+...+220092+22+23+...+22009)-(1+2+22+...+220081+2+22+...+22008)

=>A=22009−122009−1

=>A=(-1).(−2)2009(−2)2009+(-1).1

=>A=(-1).[(−2)2009+1][(−2)2009+1]

=>A=(-1).(1−22009)(1−22009)

=>1+2+22+...+220081+2+22+...+22008/1-2200922009

=(−1).(1−22009)1−22009(−1).(1−22009)1−22009=-1

 

 

Giải:

Đặt A=1+2+22+23+...+22008

    2A=2+22+23+24+...+22009

2A-A=(1+2+22+23+...+22008)-(2+22+23+24+...+22009)

    A =1-22009

Vậy B=1-22009/1-22009=1

Chúc bạn học tốt!

16 tháng 9 2021

A \(=\)\(1+2^1+2^2+...+2^{2007}\)

⇒2 A \(=\)\(2+2^2+...+2^{2007}+2^{2008}\)

2A - A \(=\)( \(2+2^2+...+2^{2007}+2^{2008}\) ) - ( \(1+2^1+2^2+...+2^{2007}\) )

A\(=\)\(2^{2008}-1\)

\(3A=3\left(2^{2008}-1\right)\)

      \(=3.2^{2008}-3\)

 

19 tháng 4 2021

          Ta gọi tử của phân số B là A ta có:

A=1+2+2^2+2^3+...+2^2008

2A=2 + 2^2 + 2^3 + 2^4 +... + 2^2009

=>A=2^2009 - 1

   A=-1 + 2^2009

          ta thấy tử là số đối của mẫu =>B=\(\dfrac{-1}{1}\)

  

        

19 tháng 4 2021

cảm ơn bạn nhiều

 

A=(1+2+2^2)+2^3(1+2+2^2)+...+2^96(1+2+2^2)+2^99

=7(1+2^3+...+2^96)+2^99 ko chia hết cho 7

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Lời giải:
$A=(2+2^2)+(2^3+2^4)+....+(2^{99}+2^{100})$
$=2(1+2)+2^3(1+2)+...+2^{99}(1+2)$

$=2.3+2^3.3+...+2^{99}.3$

$=3(2+2^3+...+2^{99})\vdots 3$

Ta có đpcm.

21 tháng 11 2021

A=\((1+2)+\left(2^2+2^3\right)+...+\left(2^{19}+2^{20}\right)\)

A=\(3.1+2^2\left(1+2\right)+...+2^{19}\left(1+2\right)\)

A=\(3.1+3.2^2+...+3.2^{19}\)

A=\(3\left(1+2^2+...+2^{19}\right)\)\(⋮3\)

Vậy A\(⋮3\)

21 tháng 11 2021

A=(1+2)+(22+23)+...+(219+220)(1+2)+(22+23)+...+(219+220)

A=3.1+22(1+2)+...+219(1+2)3.1+22(1+2)+...+219(1+2)

A=3.1+3.22+...+3.2193.1+3.22+...+3.219

A=3(1+22+...+219)3(1+22+...+219)⋮3⋮3

NÊN  A⋮3

6 tháng 4 2017

Số số hạng của biểu thức A là: (40-21):1+1=20(số hạng)

Ta có : 1/21>1/40,1/22>1/40,1/23>1/40,...,1/40=1/40

      1/21+1/22+1/23+...+1/40>1/40+1/40+1/41+1/40+...+1/40( 20 số 1/40)

      A>1/40x20=1/2

      A>1/20  (1)

Lại có: 1/21=1/21,1/21>1/22,1/21>1/23,...,1/21>1/40

      1/21+1/21+1/21+...+1/21(20 số 1/21)>1/21+1/22+1/23+...+1/40

      1/21x20>A

      20/21>A.Mà 1>20/21

    1>A   (2)

Từ (1) và (2) ta có : 1/2<A<1(đpcm)

Vậy bài tôán đđcm

6 tháng 4 2017

\(\frac{1}{2}=\frac{1}{40}+\frac{1}{40}+....+\frac{1}{40}\)có 20 số hạng      \(\)

\(\frac{1}{21}+\frac{1}{22}+....+\frac{1}{40}\)có 20 số hạng

\(\frac{1}{21}>\frac{1}{40}\)

\(\frac{1}{22}>\frac{1}{40}\)

\(.....\)

\(\frac{1}{40}=\frac{1}{40}\)\(\Rightarrow\frac{1}{2}< \frac{1}{21}+\frac{1}{22}+.....+\frac{1}{40}\)

\(1=\frac{1}{40}+....+\frac{1}{40}\)có 40 số hạng mà A chỉ có 20 số hạng 

\(\Rightarrow\frac{1}{2}< A< 1\)

25 tháng 12 2021

\(A=1+2+2^2+2^3+....+2^{98}+2^{99}\\ \Leftrightarrow A=\left(1+2\right)+\left(2^2+2^3\right)+\left(2^4+2^5\right)+....+\left(2^{98}+2^{99}\right)\\ \Leftrightarrow A=3+2^2.\left(1+2\right)+2^4.\left(1+2\right)+....+2^{98}.\left(1+2\right)\\ \Leftrightarrow A=3+3.2^2+3.2^4+....+3.2^{98}\\ \Leftrightarrow A=3.\left(1+2^2+2^4+...+2^{98}\right)⋮3\)