Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 + 2^10]
Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]
Q = 2 . 3+2^3 .3 +... + 2^9 .3
Q = 3. [ 2 + 2^3 +... + 2^9]
Vậy Q chia hết cho 3
\(A< \frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2007.2009}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2007}-\frac{1}{2009}=\frac{1}{3}-\frac{1}{2009}=\frac{2006}{6027}< \frac{2006}{4016}=\frac{1003}{2008}\)Vây:.......
Xét p/s A=\(\dfrac{2}{3^2}+\dfrac{2}{5^2}+...........+\dfrac{2}{2007^2}\)
A<\(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...........+\dfrac{2}{2006.2008}\)
A<\(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2006}-\dfrac{1}{2008}\)
A<\(\dfrac{1}{2}-\dfrac{1}{2008}\)
A<\(\dfrac{1003}{2008}\)
Ta có đpcm
Ta thấy với k \(\in\) N* thì k2 > (k - 1)(k + 1).
Thật vậy, ta có (k - 1)(k + 1) = k(k + 1) - (k + 1) = k2 + k - k - 1 = k2 - 1 < k2.
Từ đó suy ra: 32 > 2 . 4; 52 > 4 . 6; 72 > 6 . 8;...; 20072 > 2006 . 2008.
\(\Rightarrow\dfrac{2}{3^2}< \dfrac{2}{2.4};\dfrac{2}{5^2}< \dfrac{2}{4.6};\dfrac{2}{7^2}< \dfrac{2}{6.8};...;\dfrac{2}{2007^2}< \dfrac{2}{2006.2008}\)
\(\Rightarrow A< \dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{2006.2008}\)
\(\Rightarrow A< \dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2006}-\dfrac{1}{2008}\)
\(\Rightarrow A< \dfrac{1}{2}-\dfrac{1}{2008}=\dfrac{1003}{2008}\)
Bài 1:
a)CMR: ab + ba chia hết cho 11
Theo đề bài ta có: ab + ba = (10a + b) + (10b + a)
= 11a + 11b chia hết cho 11 b)CMR: abc - cba chia hết cho 99
Theo đề bài ta có: abc - cba = (100a - 10b - c) + (100c - 10b - a)
= 99a - 99c chia hết cho 99
Bài 2
A= (321 + 322 + 323) + ... + (327 + 328 + 329) A= 321.(1 + 3 + 32) + ... + 327. (1 + 3 + 32)
A=321 . 13 + ... + 327 . 13
A= 13 . (321 + ... + 327) chia hết cho 13
lộn cái này mới đúng, bạn chép cái này nhé
Xét B=1+12 +13 +...+12008 =(1+12008 )+(12 +12007 )+...+(11004 +11005 )
=20091.2008 +20092.2007 +...+20091004.1005 =2009.(11.2008 +12.2007 +...+11004.1005 )
quy đồng mẫu số các phân số trong ngoặc: Gọi k1 là thừa số phụ của 11.2008 ;...; k1004 là thừa số phụ của 11004.1005
=> B=2009.k1+k2+...+k10041.2.3.4...2007.2008
=> 1.2.3....2007.2008.2009.k1+k2+...+k10041.2.3...2007.2008 =2009.(k1+k2+...+k1004)
Tổng k1 + k2 + ...+ k1004 là số tự nhiên => A chia hết cho 2009
\(A=\frac{2}{3^2}+\frac{2}{5^2}+.......+\frac{2}{2007^2}\)
\(A=2.\left(\frac{1}{3.3}+\frac{1}{5.5}+......+\frac{1}{2007.2007}\right)\)
\(A< 2.\left(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2006.2007}\right)\)
\(A< 2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2006}-\frac{1}{2007}\right)\)
\(A< 2.\left(\frac{1}{2}-\frac{1}{2007}\right)\)
\(A< 2.\frac{2005}{4014}\)
\(A< \frac{2005}{2007}\)
Ta thấy
2/(3x3) < 2/(2x4) = 1/2 – 1/4
2/(5x5) < 2/(4x6) = 1/4 – 1/6
2/(7x7) < 2/(6x8) = 1/6 – 1/8
………
2/(2007x2007) < 2/(2006x2008) = 1/2006 – 1/12008
Nên:
A = 2/3^2 +2/5^2+2/7^2 +.....+2/2007^2 < 2/(2x4) + 2/(4x6) + …. + 2/(2006x2008) =
1/2 – 1/4 + 1/4 – 1/6 + 1/6 – 1/8 + … + 1/2006 – 1/2008 =
1/2 – 1/2008 = 1003/2008
Vậy: .....
\(A=1+2+2^2+.......+2^{2007}\Rightarrow2A=2+2^2+2^3+.........+2^{2008}\)
b) sai đề
c) dễ lắm
A = 1 + 2 + 2 2 + . . . + 2 2007
2 A = 2 + 2 2 + . . . + 2 2007 + 2 2008
A = 2A - A = ( 2 + 2 2 + . . . + 2 2007 + 2 2008 ) - ( 1 + 2 + 2 2 + . . . + 2 2007 ) = 2 2008 - 1
Vậy A = 2 2008 - 1