K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2016

Đặt A = 3a + 4b

B = a + 5b

=> 3B - A = 3.(a + 5b) - (3a + 4b)

3B - A = (3a + 15b) - (3a + 4b)

3B - A = 11b chia hết cho11

6 tháng 9 2016

Đặt A = 3a + 4b

Và B = a + 5b

=> 3B - A = 3.(a + 5b) - (3a + 4b)

=> 3B - A = (3a + 15b) - (3a + 4b)

=> 3B - A = 11b chia hết cho 11

=> 3B - A chia hết cho 11

Mầ đầu bài đã cho A chia hết cho 11

=> 3B chia hết cho 11

Vậy B = a + 5b sẽ chia hết cho 11

11 tháng 10 2017

c) 1. 10n+2 \(⋮\)2n-1

=> 5(2n-1) +7 \(⋮\)2n-1   => 7\(⋮\)2n-1

    2. 2n+3\(⋮\)n-2

=> 2(n-2) +7\(⋮\)n-2      => 7\(⋮\)n-2

    3. 3n+1 \(⋮\)11-2n

=> 6n+2 \(⋮\)2n-11

=> 3(2n-11) +35\(⋮\)2n-11

=> 35\(⋮\)2n-11

11 tháng 10 2017

a) vì chia 4 dư 2 nên \(\overline{5b}\)chia 4 dư 2 => b là 0 ; 4 ; 8

nếu b =0 thì 4+3+a+5+0 = 12 +a chia 9 dư 2 => a=8

nếu b =4 thì 4+3+a+5+4 = 16 +a chia 9 dư 2 => a=4

nếu b = 8 thì 4+3+a+5+8 = 20+a chia 9 dư 2 => a = 0 hoặc a=9

cũng 3 năm r chưa lm nên k biết có đúng k

8 tháng 12 2015

mk làm phụ mấy câu thôi

a)2a-7 chia hết cho a-1

2a-2-5 chia hết cho a-1

2(a-1)-5 chia hết cho a-1

=>5 chia hết cho a-1 hay a-1EƯ(5)={1;-1;5;-5}

=>aE{2;0;6;-4}

b)3a+4 chia hết cho a-3

3a-9+13 chia hết cho a-3

3(a-3)+13 chia hết cho a-3

=>13 chia hết cho a-3 hay a-3EƯ(13)={1;-1;13;-13}

=>aE{4;2;16;-10}

24 tháng 9 2016

khó quá

NV
5 tháng 8 2020

\(3=a+b+ab\le a+b+\frac{\left(a+b\right)^2}{4}\Rightarrow\left(a+b\right)^2+4\left(a+b\right)-12\ge0\)

\(\Leftrightarrow\left(a+b-2\right)\left(a+b+6\right)\ge0\Rightarrow a+b\ge2\)

Đặt vế trái của BĐT là P

\(P=\frac{4a\left(a+1\right)+4b\left(b+1\right)}{\left(a+1\right)\left(b+1\right)}+2ab-\sqrt{7-3\left(3-a-b\right)}\)

\(P=\frac{4\left(a^2+b^2+a+b\right)}{ab+a+b+1}+2ab-\sqrt{3\left(a+b\right)-2}\)

\(P=a^2+b^2+a+b+2ab-\sqrt{3\left(a+b\right)-2}\)

\(P=\left(a+b\right)^2+a+b-\sqrt{3\left(a+b\right)-2}\)

Đặt \(\sqrt{3\left(a+b\right)-2}=x\Rightarrow\left\{{}\begin{matrix}x\ge2\\a+b=\frac{x^2+2}{3}\end{matrix}\right.\)

\(\Rightarrow P=\left(\frac{x^2+2}{3}\right)^2+\frac{x^2+2}{3}-x=\frac{x^4+7x^2-9x+10}{9}\)

\(P=\frac{x^4+7x^2-9x-26+36}{9}=\frac{\left(x-2\right)\left(x^3+2x^2+11x+13\right)}{9}+4\ge4\) ; \(\forall x\ge2\) (đpcm)

Dấu "=" xảy ra khi \(x=2\) hay \(a=b=1\)

AH
Akai Haruma
Giáo viên
19 tháng 7

Bạn lưu ý, gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người đọc hiểu đề của bạn hơn nhé.