K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài dễ lắm làm đi hỏi làm gì

12 tháng 3 2020

Lại gặp thánh troll rồi

17 tháng 7 2017

Ta có : 3(2x - 1)2 \(\ge0\forall x\)

           7(3y + 5)2 \(\ge0\forall x\)

Mà : 3(2x - 1)2 + 7(3y + 5)2 = 0 

Nên : 3(2x - 1)2 = 7(3y + 5)2 = 0 

\(\Leftrightarrow\hept{\begin{cases}3\left(2x-1\right)^2=0\\7\left(3y+1\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)^2=0\\\left(3y+1\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)=0\\\left(3y+1\right)=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x=1\\3y=-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{1}{3}\end{cases}}\)

28 tháng 9 2021

\(a,\left(a^2-b^2\right)^2+4\left(ab\right)^2=a^4-2a^2b^2+b^4+4a^2b^2\\ =a^4+2a^2b^2+b^4=\left(a^2+b^2\right)^2\\ b,\left(a^2+b^2\right)\left(x^2+y^2\right)\\ =a^2x^2+a^2y^2+b^2x^2+b^2y^2\\ \left(ax+by\right)^2=a^2x^2+2axby+b^2y^2\\ \Rightarrow\left(a^2+b^2\right)\left(x^2+y^2\right)\ne\left(ax+by\right)^2\)

Hoặc áp dụng BĐT Bunhiacopski:

\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)

Dấu \("="\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}\)

3 tháng 1 2017

giúp mk vs các bn ui, mai mk nộp bài rùi, mk cần gấp lắm lắm,...giúp mk nha....

30 tháng 9 2020

a. Ta có : (x + y)[(x - y)2 + xy]

= (x + y)(x2 - 2xy + y2 + xy)

= (x + y)(x2 - xy + y2)

= x3 + y3 

b. Ta có : x3 + y3 - xy(x + y) 

= x3 + y3 - x2y - xy2

=x2(x - y) + y2(y - x)

= (x - y)(x2 - y2)

= (x - y)2.(x + y) đpcm

c) Ta có (x + y)3 - 3xy(x + y)

= (x + y)[(x + y)2 - 3xy)

= (x + y)(x2 + 2xy + y2 - 3xy)

= (x + y)(x2 - xy + y2) (đpcm)

30 tháng 9 2020

a) VP = ( x + y )( x2 - 2xy + y2 + xy ) = ( x + y )( x2 - xy + y2 ) = x3 + y3 = VT ( đpcm )

b) VP = ( x + y )( x - y )2 = ( x + y )( x2 - 2xy + y2 ) = x3 - 2x2y + xy2 + x2y - 2xy2 + y3 = x3 + y3 - x2y - xy2 = x3 + y3 - xy( x + y ) = VT ( đpcm )

c) VP = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 = x3 + y3 = ( x + y )( x2 - xy + y2 ) = VT ( đpcm )

16 tháng 7 2016

a/ \(ab-2b-3a+6=\left(ab-2b\right)-\left(3a-6\right)=b\left(a-2\right)-3\left(a-2\right)=\left(a-2\right)\left(b-3\right)\)

b/ \(ax-by-ay+bx==\left(ax+bx\right)-\left(by+ay\right)=x\left(a+b\right)-y\left(b+a\right)=\left(a+b\right)\left(x-y\right)\)

c/ \(ax+by-ay-bx=\left(ax-ay\right)+\left(by-bx\right)=a\left(x-y\right)+b\left(y-x\right)=a\left(x-y\right)-b\left(x-y\right)=\left(x-y\right)\left(a-b\right)\)

d/ \(a^2-\left(b+c\right)a+bc=a^2-ab-ac+bc=\left(a^2-ac\right)+\left(ab-bc\right)=a\left(a-c\right)+b\left(a-c\right)=\left(a-c\right)\left(a+b\right)\)e/ \(\left(3a-2\right)\left(4a-3\right)-\left(2-3a\right)\left(3a+1\right)=\left(3a-2\right)\left(4a-3\right)+\left(3a-2\right)\left(3a+1\right)=\left(3a-2\right)\left(4a-3+3a+1\right)=\left(3a-2\right)\left(7a-2\right)\)

f/ \(ax+ay+az-bx-by-bz-x-y-z=\left(ax+ay+az\right)-\left(bx+by+bz\right)-\left(x+y+z\right)\)

\(=a\left(x+y+z\right)-b\left(x+y+z\right)-\left(x+y+z\right)=\left(x+y+z\right)\left(a-b-1\right)\)

18 tháng 6 2019

Cho\(\frac{x}{a}=\frac{y}{b}=k\Rightarrow\hept{\begin{cases}x=ak\\y=bk\end{cases}}\)

Ta thấy 

\(\left(x^2+y^2\right)\left(a^2+b^2\right)=\left(a^2k^2+b^2k^2\right)\left(a^2+b^2\right)=k^2\left(a^2+b^2\right)\left(a^2+b^2\right)=k^2\left(a^2+b^2\right)^2\)

\(\left(ax+by\right)^2=\left(a.ak+b.bk\right)^2=\left(a^2k+b^2k\right)^2=\left[k\left(a^2+b^2\right)\right]^2=k^2\left(a^2+b^2\right)^2\)

Vậy \(\left(x^2+y^2\right)\left(a^2+b^2\right)=\left(ax+by\right)^2\left(ĐPCM\right)\)

18 tháng 6 2019

Có x/a = y/b => xb = ya(1) 

<=> x2b= y2a2(2)

Có (x2 + y2)(a+ b2) = x2a+ y2a2 + x2b2 + y2b2

= x2a2 + y2b2 + x2b2 + y2a2 (3).

Thay (2) vào (3) ta được: (x2 + y2)(a2 + b2) = x2a2 + y2b2 + 2x2b2 = x2a+ y2b2 + 2xbxb (4)

Thay (1) vào (4) ta có: (x2 + y2)(a2 + b2) = x2a2 + y2b2 + 2xbay = (ax + by)2 (đpcm)