K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2019

Vẫn thiếu: r là số dư của a chia cho 42 hay r<42.

Ta có:  \(a=42x+r=2.3.7x+r\)

Vì a là số nguyên tố

=> r không thể chia hết cho các số 2; 3; 7

Mặt khác r là hợp số ( r không phải là số nguyên tố; r khác 1)

Các số không chia hết cho 2 và là hợp số là: 9; 15; 21;25;27;33;35;39  loại đi các số không chia hết cho 3 , 7

=> r =25

Như vậy a=42.x+25 <200

Nếu x\(\ge\)5 => 42.x+25 \(42.5+25\ge235>200\)( loại)

Do đó x<5

+) x = 0 

=> a = r=25 loại

+) x=1

=> a=42.1+25=67 ( là số nguyên tố) => a=67 thỏa mãn

+) x=2

=> a=42.2+25=109  ( tm)

+) x=3 

=> a=42.3+25=151 (tm)

+) x=4

=> a=42.2+25 =193 ( tm)

Vậy \(a\in\left\{67;109;151;193\right\}\)

9 tháng 9 2019

a<200

9 tháng 9 2019

thêm đk x là stn nha

\(Vi:\)cac ươc nguyên to cua 42 là: 2;3;7 \(\Rightarrow de:a\) là so nguyên to thì:

r ko chia hêt cho 2;3 và 7 và: r là hợp so(đk đề bài) và: r<42

\(\Rightarrow r=25ma:a< 200\Rightarrow a\in\text{{}25;67;109;151;193\) thư lại coi loại TH nào ko r kêt luận 

bàn phim mk bị hư nên it viêt dâu được

10 tháng 9 2019

Ta có: a=42x+r=2.3.7(=42).x+r..

Vì a là số  nguyên tố nên sẽ không chia hết cho 2.Suy ra r không chia hết cho 2

Các hợp số không chia hết cho 2 dưới42:9,15,21,25,33,27,39,35.

Loại các số chia hết cho 3,7 ta còn:25.Suy ra r=25.

Vì a<200 nên a sẽ có những trường hợp sau đây:

TH1;a=42.1+25=67

TH2:a=42.2+25=109

TH3:a=42.3+25=151 

TH4:a=42.4+25=193 

VẬY a thuộc {67;109;151;193}

16 tháng 2 2016

Lời giải. Phân tích \(42=3.2.7\)
Ta có \(P=42k+r\)
Xét

  • Nếu \(P=2\Rightarrow r=40\) thoả mãn.
  • Nếu  \(P=3\Rightarrow r=49\)thoả mãn.
  • Nếu \(P>3\), do P nguyên tố nên r không thể là các ước nguyên dương của 42, r hợp số mà \(r<42\)
  • Nên \(r=25\)
22 tháng 7 2015

Bài 1 :

Gọi p là số nguyên tố phải tìm.

Ta có: p chia cho 60 thì số dư là hợp số $⇒$⇒ p = 60k + r = 22.3.5k + r  với k,r $∈$∈ N ; 0 < r < 60 và r là hợp số.

Do p là số nguyên tố nên r không chia hết các thừa số nguyên tố của p là 2 ; 3 và 5.

Chọn các hợp số nhỏ hơn 60, loại đi các số chia hết cho 2 ta có tập hợp A =  {9 ; 15 ; 21 ; 25 ; 27 ; 33 ; 35 ; 39 ; 45 ; 49 ; 21 ; 55 ; 57}

Loại ở tập hợp A các số chia hết cho 3 ta có tập hợp B = {25 ; 35 ; 49 ; 55}

Loại ở tập hợp B các số chia hết cho 5 ta có tập hợp C = {49}

Do đó r = 49. Suy ra p = 60k + 49. Vì p < 200 nên k = 1, khi đó p = 60.1 + 49 = 109 hoặc k = 2, khi đó p = 60.2 + 49 = 169.

Loại p = 169 = 132 là hợp số  chỉ có p = 109.

Số cần tìm là 109.

22 tháng 7 2015

2)Gọi số nguyên tố đó là n, ta có n=30k+r (r<30, r nguyên tố) 
Vì n là số nguyên tố nên r không thể chia hết cho 2,3,5 
Nếu r là hợp số không chia hết cho 2,3,5 thì r nhỏ nhất là 7*7 = 49 không thỏa mãn 
Vậy r cũng không thể là hợp số 
Kết luận: r=1 

22 tháng 8 2015

Toán lớp 6Phân tích thành thừa số nguyên tố

Đinh Tuấn Việt 20/05/2015 lúc 22:51

Theo đề bài ta có: 

 a = p1. p2n $\Rightarrow$⇒ a3 = p13m . p23n.

Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)

$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1

Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)

-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)

-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)

                                                   Vậy a2 có 21 ước số.

 Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.

nguyên 24/05/2015 lúc 16:50

Theo đề bài ta có: 

 a = p1. p2n $$

 a3 = p13m . p23n.

Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)

$$

 m = 1 ; n = 3 hoặc m = 3 ; n = 1

Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)

-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)

-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)

                                                   Vậy a2 có 21 ước số.

 Đúng 0

Captain America

22 tháng 8 2015

Có 21 ước

19 tháng 11 2015

1)

a)3

b)1

 

13 tháng 12 2015

a,ko có số nguyên tố nào

b, r=1

13 tháng 12 2015

các bạn giúp mình viết lời giải luôn nha

 

17 tháng 3 2018

a, Giả sử tồn tại a,b thỏa mãn đề bài

Ta có: \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

\(\Rightarrow\frac{b-a}{ab}=\frac{1}{a-b}\)

\(\Rightarrow\frac{-\left(a-b\right)}{ab}=\frac{1}{a-b}\)

\(\Rightarrow-\left(a-b\right)^2=ab\)

Vì \(\left(a-b\right)^2\ge0\forall a,b\Rightarrow-\left(a-b\right)^2\le0\forall a,b\)

Mà a,b là số nguyên dương => ab > 0

=> Mâu thuẫn

=> Giả sử sai

Vậy không tồn tại a,b thỏa mãn đề

b, https://olm.vn/hoi-dap/question/1231.html