Xác định hàm số bậc hai y =ax^2 + bx + c biết :
Qua A(1;0) và đỉnh I có tung độ bằng -1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Đỉnh của đths \((\frac{-b}{2a}, \frac{4ac-b^2}{4a})=(\frac{-b}{4},\frac{8c-b^2}{8})=(-1;0)\)
\(\Leftrightarrow \left\{\begin{matrix} \frac{-b}{4}=-1\\ \frac{8c-b^2}{8}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=4\\ 8c=b^2=16\end{matrix}\right.\Leftrightarrow b=4; c=2\)
Câu 2:
ĐTHS đi qua 3 điểm $A, B,C$ nên:
\(\left\{\begin{matrix}
-1=a.0^2+b.0+c\\
-1=a.1^2+b.1+c\\
1=a(-1)^2+b(-1)+c\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
c=-1\\
a+b+c=-1\\
a-b+c=1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} c=-1\\ a=1\\ b=-1\end{matrix}\right.\)
Với \(a\ne0\) từ đề bài ta có:
\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=2\\4a+2b+c=1\\16a+4b+c=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4a+b=0\\4a+2b+c=1\\16a+4b+c=-3\end{matrix}\right.\)
\(\Rightarrow a=-1;b=4;c=-3\)
Vậy (P): \(y=-x^2+4x-3\)
Từ điều kiện đề bài: (hiển nhiên a khác 0):
\(\left\{{}\begin{matrix}\dfrac{4ac-b^2}{4a}=-1\\a-b+c=7\\c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4a-b^2=-4a\\a-b=6\\c=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-6\right)^2-8a=0\\b=a-6\\c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\left\{2;18\right\}\\b=a-6\\c=1\end{matrix}\right.\)
Có 2 parabol thỏa mãn: \(\left[{}\begin{matrix}y=2x^2-4x+1\\y=18x^2+12x+1\end{matrix}\right.\)
y = ax2 + bx + c đạt Max bằng 5 tại x = -2
--> a < 0; \(\dfrac{4ac - b^2}{4a}\) = 5;
\(\dfrac{-b}{2a}\) = -2
--> b = 4a; \(\dfrac{4ac - 16a^2}{4a}\) = 5
--> b = c - 5 = 4a
Đồ thị hàm số đi qua M(1; -1)
--> a + b + c = -1
--> a + 4a + 4a + 5 = -1
<=> 9a = -6
<=> a = \(\dfrac{-2}{3}\) --> b = \(\dfrac{-8}{3}\); c = \(\dfrac{7}{3}\)
--> \(y = \dfrac{-2}{3}x^2\ -\)\(\dfrac{8}{3}x\) + \(\dfrac{7}{3}\)
\(A\left(1;3\right)\) thuộc đths \(\Rightarrow a+b+c+1=3\Rightarrow a+b+c=2\) (1)
\(B\left(-1;4\right)\) thuộc đths \(\Rightarrow-a+b-c+1=4\Rightarrow-a+b-c=3\) (2)
Ta có \(y'\left(x\right)=3ax^2+2bx+c\)
\(y'\left(2\right)=0\Rightarrow12a+4b+c=0\) (3)
Từ (1), (2) và (3) ta được \(a=-\dfrac{19}{22};b=\dfrac{5}{2};c=\dfrac{4}{11}\)
Vậy hàm số đã cho là \(y=-\dfrac{19}{22}x^3+\dfrac{5}{2}x^2+\dfrac{4}{11}x+1\)
\(\Rightarrow\left\{{}\begin{matrix}4a-2b+c=2\left(1\right)\\a-b+c=-5\left(2\right)\\a+b+c=-1\left(3\right)\end{matrix}\right.\)
\(\left(2\right)+\left(3\right)\Leftrightarrow a+c=-3\) \(\Rightarrow b=2\)
\(\Rightarrow4a+c=2+4=6\)
\(\Rightarrow\left\{{}\begin{matrix}a+c=-3\\4a+c=6\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=3\\c=-6\end{matrix}\right.\)
Đáp án D
Đồ thị hàm số đi qua điểm A(2; 1) thì 1 = a.2 + 1 ⇒ a = 0
Vậy giá trị cần tìm là a = 0
y = 4x2 - 4x
(Nguyễn Văn Cụ Tổ)
Bài thiếu đề nhé, sửa đề thành c=0 cho dễ:
Ta có: \(\frac{-b^2+4ac}{4a}=-1\)\(\Rightarrow b^2=4a\)
Qua A(1;0)=>\(a+b=0\Leftrightarrow a=-b\)
Thay vào ta có:\(b^2=-4b\)\(\Leftrightarrow\left[{}\begin{matrix}a=b=0\\b=-4;a=4\end{matrix}\right.\)
Vì là hàm bậc 2 nên y=4x^2-4x.
#Walker