K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2019

 căn 2-X + căn 1+ X 

căn 2-X 0 với mọi X

căn 1 +X 0 với mọi X

căn 2-X + căn 1+ X > 0 với mọi X

=> A max > 0 khi căn 2- X > 0

                            căn 1+  X > 0

=> A mx là số bất kì với mọi  X

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

29 tháng 11 2021

\(1,yz\sqrt{x-1}=yz\sqrt{\left(x-1\right)\cdot1}\le yz\cdot\dfrac{x-1+1}{2}=\dfrac{xyz}{2}\)

\(zx\sqrt{y-2}=\dfrac{zx\cdot2\sqrt{2\left(y-2\right)}}{2\sqrt{2}}\le\dfrac{xyz}{2\sqrt{2}}\\ xy\sqrt{z-3}=\dfrac{xy\cdot2\sqrt{3\left(z-3\right)}}{2\sqrt{3}}\le\dfrac{xyz}{2\sqrt{3}}\)

\(\Leftrightarrow M\le\dfrac{\dfrac{xyz}{2}+\dfrac{xyz}{2\sqrt{2}}+\dfrac{xyz}{2\sqrt{3}}}{xyz}=\dfrac{xyz\left(\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\right)}{xyz}=\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=2\\z-3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\\z=6\end{matrix}\right.\)

29 tháng 11 2021

\(2,N^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\\ \Leftrightarrow N^2\le\left(a+b+b+c+c+a\right)\left(1^2+1^2+1^2\right)\\ \Leftrightarrow N^2\le6\left(a+b+c\right)=6\sqrt{2}\\ \Leftrightarrow N\le\sqrt{6\sqrt{2}}\)

Dấu \("="\Leftrightarrow a=b=c=\dfrac{\sqrt{2}}{3}\)

8 tháng 8 2021

a) \(A=\sqrt{x-2}+\sqrt{6-x}\)

\(\Rightarrow A^2=x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}\)

Ta có \(\sqrt{\left(x-2\right)\left(6-x\right)}\ge0,\forall x\)

Do đó \(A^2=4+2\sqrt{\left(x-2\right)\left(6-x\right)}\ge4\)

Mà A không âm \(\Leftrightarrow A\ge2\)

Dấu "=" \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

Áp dụng BĐT Bunhiacopxky:

\(A^2=\left(\sqrt{x-2}+\sqrt{6-x}\right)^2\le\left(x-2+6-x\right)\left(1+1\right)=4\cdot2=8\)

\(\Leftrightarrow A\le\sqrt{8}\)

Dấu "=" \(\Leftrightarrow x-2=6-x\Leftrightarrow x=4\)

Mấy bài còn lại y chang nha 

Tick hộ nha

8 tháng 8 2021

ank

 

18 tháng 9 2017

câu 1 

ta có .....

lười viết Min - cốp xki nha

18 tháng 9 2017

DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)

mà \(3x\ge-3\sqrt{5}\)

mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)

min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)

12 tháng 6 2019

áp dung bđt Bunhiacooxki:

\(A^2=\left(\sqrt{1+\sqrt{x}}+\sqrt{1+\sqrt{1-x}}\right)^2\le\left(1+1\right)\left(1+\sqrt{x}+1+\sqrt{1-x}\right).\)

\(=2\left(2+\sqrt{x}+\sqrt{1-x}\right)\le2\left(2+\sqrt{\left(1+1\right)\left(x+1-x\right)}\right)=2\left(2+\sqrt{2}\right).\)

\(\Rightarrow A\le\sqrt{2\left(2+\sqrt{2}\right)}\)

Vậy max \(A=\sqrt{2\left(2+\sqrt{2}\right)}\Leftrightarrow x=\frac{1}{2}.\)

8 tháng 9 2020

\(đk:x-1\ge0\Rightarrow x\ge1\text{ và }2-x\ge0\Rightarrow x\le2\)

có : \(\left(4\sqrt{x-1}+3\sqrt{2-x}\right)^2\le\left(4^2+3^2\right)\left[\left(\sqrt{x-1}\right)^2+\left(\sqrt{2-x}\right)\right]\)

\(\Rightarrow A^2\le25\left(x-1+2-x\right)\)

\(\Rightarrow A^2\le25\) mà \(A\ge0\)

\(\Rightarrow A\le5\)

Dấu = xảy ra <=> \(\frac{4}{\sqrt{x-1}}=\frac{3}{\sqrt{2-x}}\)      đk : x khác 1 và x khác 2

\(\Leftrightarrow\frac{16}{x-1}=\frac{9}{2-x}\)

\(\Leftrightarrow32-16x=9x-9\)

\(\Leftrightarrow25x=41\Leftrightarrow x=\frac{41}{25}\left(tm\right)\)

vậy max a = 5 khi x = 41/25