Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)
mà \(3x\ge-3\sqrt{5}\)
mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)
min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)
áp dung bđt Bunhiacooxki:
\(A^2=\left(\sqrt{1+\sqrt{x}}+\sqrt{1+\sqrt{1-x}}\right)^2\le\left(1+1\right)\left(1+\sqrt{x}+1+\sqrt{1-x}\right).\)
\(=2\left(2+\sqrt{x}+\sqrt{1-x}\right)\le2\left(2+\sqrt{\left(1+1\right)\left(x+1-x\right)}\right)=2\left(2+\sqrt{2}\right).\)
\(\Rightarrow A\le\sqrt{2\left(2+\sqrt{2}\right)}\)
Vậy max \(A=\sqrt{2\left(2+\sqrt{2}\right)}\Leftrightarrow x=\frac{1}{2}.\)
Đk: \(x\ge0\)
a) Ta có: x = 16 => A = \(\frac{\sqrt{16}+5}{\sqrt{16}+2}=\frac{4+5}{4+2}=\frac{9}{6}=\frac{3}{2}\)
\(x=3-2\sqrt{2}=\left(\sqrt{2}-1\right)^2\)=> \(\sqrt{x}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\)
=> A = \(\frac{\sqrt{2}-1+5}{\sqrt{2}-1+2}=\frac{\sqrt{2}+4}{\sqrt{2}+2}=\frac{\sqrt{2}\left(2\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}{\sqrt{2}\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=\frac{4-\sqrt{2}-1}{2-1}=3-\sqrt{2}\)
b) A = 2 <=> \(\frac{\sqrt{x}+5}{\sqrt{x}+2}=2\) <=> \(\sqrt{x}+5=2\sqrt{x}+4\) <=> \(\sqrt{x}=1\) <=> x = 1 (tm)
\(A=\sqrt{x}+1\) <=> \(\frac{\sqrt{x}+5}{\sqrt{x}+2}=\sqrt{x}+1\) <=> \(\sqrt{x}+5=\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\)
<=> \(\sqrt{x}+5=x+3\sqrt{x}+2\) <=> \(x+2\sqrt{x}-3=0\)<=> \(x+3\sqrt{x}-\sqrt{x}-3=0\)
<=> \(\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\) <=> \(\sqrt{x}-1=0\)(vì \(\sqrt{x}+3>0\))
<=> \(x=1\)(tm)
c) Ta có: \(A=\frac{\sqrt{x}+5}{\sqrt{x}+2}=\frac{\sqrt{x}+2+3}{\sqrt{x}+2}=1+\frac{3}{\sqrt{x}+2}\)
Do \(\sqrt{x}+2\ge\) => \(\frac{3}{\sqrt{x}+2}\le\frac{3}{2}\) => \(1+\frac{3}{\sqrt{x}+2}\le1+\frac{3}{2}=\frac{5}{2}\) => A \(\le\)5/2
Dấu "=" xảy ra<=> x = 0
Vậy MaxA = 5/2 <=> x = 0
căn 2-X + căn 1+ X
căn 2-X > 0 với mọi X
căn 1 +X > 0 với mọi X
căn 2-X + căn 1+ X > 0 với mọi X
=> A max > 0 khi căn 2- X > 0
căn 1+ X > 0
=> A mx là số bất kì với mọi X