K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2019

Vì \(\frac{2x}{3}=\frac{9y}{11}=\frac{6z}{-5}\)

\(\Rightarrow\frac{2x}{3}.\frac{1}{18}=\frac{9y}{11}.\frac{1}{18}=\frac{6z}{-5}.\frac{1}{18}\)

\(\Rightarrow\frac{x}{27}=\frac{y}{22}=\frac{z}{-15}\)

\(\Rightarrow\frac{-4x}{-108}=\frac{3y}{66}=\frac{7z}{-105}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có: 

\(\frac{-4x}{-108}=\frac{3y}{66}=\frac{7z}{-105}=\frac{-4x+3y-7z}{-108+66+105}=\frac{73}{63}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{73}{63}.27=\frac{219}{7}\\y=\frac{73}{63}.22=\frac{1606}{63}\\z=\frac{73}{63}.\left(-15\right)=\frac{-365}{21}\end{cases}}\)

Vậy ...

27 tháng 7 2019

\(a,hpt\Leftrightarrow\hept{\begin{cases}\frac{9x}{7}-\frac{2y}{3}=-28\\\frac{3x}{2}+\frac{12y}{5}=15\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}27x-14y=-588\\15x+24y=150\end{cases}\Leftrightarrow}\hept{\begin{cases}9x-\frac{14}{3}y=-196\\5x+8y=50\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}45x-\frac{70}{3}y=-980\\45x+72y=450\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{286}{3}y=1430\\45x+72y=450\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}y=15\\x=-14\end{cases}}\)

8 tháng 9 2017

\(\hept{\begin{cases}x+y=\frac{4x-3}{5}\\x+3y=\frac{15-9y}{14}\end{cases}\Leftrightarrow\hept{\begin{cases}x+y-\frac{4x}{5}=-\frac{3}{5}\\x+3y+\frac{9y}{14}=\frac{15}{14}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{5}+y=-\frac{3}{5}\\x+\frac{51y}{14}=\frac{15}{14}\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x+5y=-3\\x+\frac{51y}{14}=\frac{15}{14}\end{cases}\Leftrightarrow5y-\frac{51y}{14}=-3-\frac{15}{14}\Leftrightarrow\frac{19}{14}y=-\frac{57}{14}\Rightarrow y=-3}\)

\(x-15=-3\Rightarrow x=12\)

Vậy \(x=12;y=-3\)

28 tháng 7 2019

\(\frac{x}{10}=\frac{y}{5}\Rightarrow\frac{x}{20}=\frac{y}{10}\)

\(\frac{y}{2}=\frac{z}{3}\Rightarrow\frac{y}{10}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{20}=\frac{y}{10}=\frac{z}{15}\)

\(\Rightarrow\frac{2x}{40}=\frac{3y}{30}=\frac{z}{15}\)

áp dụng tc của dãy tỉ số = nhau

28 tháng 7 2019

=> x/20=y/10; y/10=z/15

=> x/20=y/10=z/15

từ...áp dụng....

đc : (2x-3y+4z)/(40-30+60)=280/70=4

  => x=..

=> y=...

=> z=...

bạn tự làm nha

29 tháng 10 2019

\(\hept{\begin{cases}x+\frac{3}{x}+y-\frac{2}{y}=5\\x^2+\frac{9}{x^2}+y^2+\frac{4}{y^2}=15\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x+\frac{3}{x}+y-\frac{2}{y}=5\\\left(x+\frac{3}{x}\right)^2+\left(y-\frac{2}{y}\right)^2=17\end{cases}}\)

Đặt \(\hept{\begin{cases}x+\frac{3}{x}=a\\y-\frac{2}{y}=b\end{cases}}\) \(\Rightarrow\hept{\begin{cases}a+b=5\\a^2+b^2=17\end{cases}}\) \(\Rightarrow\left(a;b\right)=\left(1;4\right);\left(4;1\right)\)

\(\Rightarrow...\)

30 tháng 10 2019

thanks

6 tháng 6 2017

Ơn trời đúng là đề sai rùi thảo nào C-S mãi mà nó cứ ko ra :)

Sửa đề: \(\hept{\begin{cases}x+y^2+z^3=14\\\left(\frac{1}{2x}+\frac{1}{3y}+\frac{1}{6z}\right)\left(3x+2y+z\right)=6\end{cases}}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT=\left(\frac{1}{2x}+\frac{1}{3y}+\frac{1}{6z}\right)\left(3x+2y+z\right)\ge\left(\frac{1}{\sqrt{2x}}\cdot\sqrt{3x}+\frac{1}{\sqrt{3y}}\cdot\sqrt{2y}+\frac{1}{\sqrt{6z}}\cdot\sqrt{z}\right)^2\)

\(=\left(\sqrt{\frac{3}{2}}+\sqrt{\frac{2}{3}}+\frac{1}{\sqrt{6}}\right)^2=\sqrt{6}^2=6=VP\)

Đẳng thức xảy ra khi \(x=y=z\)

Thay vào pt(1) có:

\(pt\left(1\right)\Leftrightarrow x+x^2+x^3-14=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+7\right)=0\)

\(\Leftrightarrow x=2\). Do \(x^2+3x+7=\left(x+\frac{3}{2}\right)^2+\frac{19}{4}>0\)

\(\hept{\begin{cases}x=2\\x=y=z\end{cases}}\Rightarrow x=y=z=2\)

7 tháng 6 2017

Bài giải của b Thắng chỉ đúng với trường hợp x,y,z không âm thôi vì nếu nó âm thì √x, √y, √z không xác định. Bài toán có cho x,y,z không âm không b.