K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2019

Ta co:\(n^2+4n=k^2\)

\(\Leftrightarrow\left(n+2\right)^2-4=k^2\)

\(\Leftrightarrow\left(n+2\right)^2-k^2=4\)

\(\Leftrightarrow\left(n+k+2\right)\left(n-k+2\right)=4\)

Ma \(4=4.1=2.2\)

Suy ra:

\(\hept{\begin{cases}n+k+2=1\\n-k+2=4\end{cases}\left(1\right)}\)

\(\hept{\begin{cases}n+k+2=2\\n-k+2=2\end{cases}\left(2\right)}\)

Xet (1) ta duoc:

\(\hept{\begin{cases}n=1\\k=-2\end{cases}}\)

Thay vao thay khong thoa man nen loai

Xet (2) ta duoc:

\(\hept{\begin{cases}n=0\\k=0\end{cases}}\)

Thay vao thay thoa man nen nhan

Vay \(n=0\)thi \(n^2+4n\)la so chinh phuong

6 tháng 9 2019

Với n = 0 thì nó là số chính phương (chọn) 

Với n > 0 thì ta có\(n^2< n^2+4n< \left(n+2\right)^2\) 

\(\Rightarrow n^2+4n=\left(n+1\right)^2\)

\(\Leftrightarrow4n=2n+1\Leftrightarrow n=\frac{1}{2}\left(KTM\right)\)

Vậy n = 0 

P/s: Lâu ko làm dạng này nên ko chắc nha!

24 tháng 2 2021

mình thua

18 tháng 4 2021

bo tay

31 tháng 10 2023

loading...  loading...  loading...  loading...  

23 tháng 6 2021

`a in ZZ`

`=>6n-4 vdots 2n+1`

`=>3(2n+1)-7 vdots 2n+1`

`=>7 vdots 2n+1`

`=>2n+1 in Ư(7)={+-1,+-7}`

`=>2n in {0,-2,6,-8}`

`=>n in {0,-1,3,-4}`

`b in ZZ`

`=>3n+2 vdots 4n-4`

`=>12n+8 vdots 4n-4`

`=>3(4n-4)+20 vdots 4n-4`

`=>20 vdots 4n-4`

`=>4n-4 in Ư(20)={+-1,+-2,+-4,+-5,+-10,+-20}`

`=>4n-4 in {+-4,+-20}`

`=>n-1 in {+-1,+-5}`

`=>n in {0,2,6,-4}`

`c in ZZ`

`=>4n-1 vdots 3-2n`

`=>2(3-2n)-7 vdots 3-2n`

`=>7 vdots 3-2n`

`=>3-2n in Ư(7)={+-1,+-7}`

`=>2n in {4,0,-4,10}`

`=>n in {2,0,-2,5}`

23 tháng 6 2021

a) đk: \(n\ne\dfrac{-1}{2}\)

Để \(\dfrac{6n-4}{2n+1}\) nguyên

<=> \(\dfrac{3\left(2n+1\right)-7}{2n+1}\) nguyên

<=> \(3-\dfrac{7}{2n+1}\) nguyên

<=> \(7⋮2n+1\)

Ta có bảng 

2n+11-17-7
n0-13-4
 tmtmtmtm

 

b)đk: \(n\ne1\)

Để \(\dfrac{3n+2}{4n-4}\) nguyên

=> \(\dfrac{3n+2}{n-1}\) nguyên

<=> \(\dfrac{3\left(n-1\right)+5}{n-1}\) nguyên

<=> \(3+\dfrac{5}{n-1}\) nguyên

<=> \(5⋮n-1\)

Ta có bảng: 

n-11-15-5
n206-4
Thử lạitmloạitm

loại

 

c) đk: \(n\ne\dfrac{3}{2}\)

Để \(\dfrac{4n-1}{3-2n}\) nguyên

<=> \(\dfrac{4n-1}{2n-3}\) nguyên

<=> \(\dfrac{2\left(2n-3\right)+5}{2n-3}\) nguyên

<=> \(2+\dfrac{5}{2n-3}\) nguyên

<=> \(5⋮2n-3\)

Ta có bảng: 

2n-31-15-5
n214-1
 tmtmtmtm

 

22 tháng 7 2023

 \(\dfrac{4n^2-9}{2n+3}=\dfrac{\left(2n+3\right)\left(2n-3\right)}{2n+3}=2n-3\)

Để \(\dfrac{4n^2-9}{2n+3}\) là số nguyên

\(\Rightarrow2n-3\in Z\)

\(\Rightarrow\forall n\in Z\)