Cho TLT a/b=c/d. Chứng minh 3a+4b/5a-3b = 3c+4d/5c-3d bằng 2 cách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta cs a/b=c/d=>a/c=b/d
=>2a+3b/2c+3d=3a-4b/3c-4d
=>2a+3b/3a-4b=2c+3d/3c-4d
=>bai toan dc c/m
Cau b tuong tu nha ban
don't forget tick me
a) Ta có \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a+3b}{2c+3d}\) (1).
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a-4b}{3c-4d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{2a+3b}{2c+3d}=\frac{3a-4b}{3c-4d}.\)
\(\Rightarrow\frac{2a+3b}{3a-4b}=\frac{2c+3d}{3c-4d}\left(đpcm\right).\)
Chúc bạn học tốt!
Ta có:
\(\frac{a}{b}=\frac{c}{d}\)=>\(\frac{3a}{3b}=\frac{3c}{3d}\)=>\(\frac{3a}{3c}=\frac{3b}{3d}\) ; \(\frac{a}{b}=\frac{c}{d}\)=>\(\frac{4a}{4b}=\frac{4c}{4d}\)=>\(\frac{4a}{4c}=\frac{4b}{4d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3a}{3c}=\frac{3b}{3d}=\frac{3a+3b}{3c+3d}\) ; \(\frac{4a}{4c}=\frac{4b}{4d}=\frac{4a+4b}{4c+4d}\)
Mà \(\frac{3a}{3b}=\frac{3b}{3d}=\frac{4a}{4c}=\frac{4b}{4d}\)
=>\(\frac{3a+3b}{3c+3d}=\frac{4a+4b}{4c+4d}\)
a )\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{2a}{2c}\)
\(\frac{a-b}{c-d}=\frac{2a}{2c}\Rightarrow\frac{a-b}{2a}=\frac{c-d}{2c}\) ( đpcm)
b ) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{3a}{3c}=\frac{2b}{2d}=\frac{5a-3b}{5c-3d}=\frac{3a+2b}{3c+2d}\)
\(\Rightarrow\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\) ( đpcm )
Đặt : \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)
\(\frac{2a+3b}{3a-4b}=\frac{2bk+3b}{3bk-4b}=\frac{b\left(2k+3\right)}{b\left(3k-4\right)}=\frac{2k+3}{3k-4}\)
\(\frac{2c+3d}{3c-4d}=\frac{2dk+3d}{3dk-4d}=\frac{d\left(2k+3\right)}{d\left(3k+4\right)}=\frac{2k+3}{3k-4}\)
Vậy \(\frac{2a+3b}{3a-4b}=\frac{2c+3d}{3c-4d}\) \(\left(đpcm\right)\)
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Ta có:
a = b.k
c = d.k
Theo bài ra ta có:
\(\frac{2a+3b}{3a-4b}=\frac{2.b.k+3.b}{3.b.k-4.b}=\frac{b\left(2.k+3\right)}{b.\left(3.k-4\right)}=\frac{2.k+3}{3.k-4}\) (1)
\(\frac{2c+3d}{3c-4d}=\frac{2.d.k+3d}{3.d.k-4d}=\frac{d.\left(2.k+3\right)}{d.\left(3.k-4\right)}=\frac{2.k+3}{3.k-4}\) (2)
Từ (1) và (2) suy ra \(\frac{2a+3b}{3a-4d}=\frac{2c+3d}{3c-4d}\Rightarrowđpcm\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\frac{2a+3b}{3a-4b}=\frac{2bk+3b}{3bk-4b}=\frac{b\left(2k+3\right)}{b\left(3k-4\right)}=\frac{2k+3}{3k-4}\)
\(\frac{2c+3d}{3c-4d}=\frac{2dk+3d}{3dk-4d}=\frac{d\left(2k+3\right)}{d\left(3k-4\right)}=\frac{2k+3}{3k-4}\)
Vậy \(\frac{2a+3b}{3a-4b}=\frac{2c+3d}{3c-4d}\)(đpcm)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có: \(\dfrac{3a+4b}{5a-3b}=\dfrac{3\cdot bk+4b}{5\cdot bk-3b}=\dfrac{b\left(3k+4\right)}{b\left(5k-3\right)}=\dfrac{3k+4}{5k-3}\)
\(\dfrac{3c+4d}{5c-3d}=\dfrac{3\cdot dk+4d}{5\cdot dk-3d}=\dfrac{d\left(3k+4\right)}{d\left(5k-3\right)}=\dfrac{3k+4}{5k-3}\)
Do đó: \(\dfrac{3a+4b}{5a-3b}=\dfrac{3c+4d}{5c-3d}\)