Rút gọn biểu thức: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B) Ta có: 2x-2y-x2+2xy-y2
⇔ 2(x-y)-(x2-2xy+y2)
⇔ 2(x-y)-(x-y)2
⇔ (x-y)(2-x+y)
Đúng thì tick nhé
\(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(=\dfrac{\left(x+y\right)\left(x+2y\right)}{x\left(x^2-y^2\right)+2y\left(x^2-y^2\right)}\)
\(=\dfrac{x+y}{x^2-y^2}\)
\(=\dfrac{1}{x-y}\)
a: =xy(1/3+4-2)=7/3xy
b: =xy^2(-1+3/2+4/3)=(1/3+3/2)xy^2=11/6xy^2
c: =4x^2y^2+2/3x^2y^2-4/3x^2y=-4/3x^2y+14/3x^2y^2
d: =3x^2y^2z+4x^2y^2z-8x^2y^2z=-x^2y^2z
Rút gọn :
b ) \(\frac{x^2+3xy+2y^2}{x^2+2x^2y-xy^2-2y^2}\)
\(=\frac{x^2+xy+2xy+2y^2}{x^3-xy^2+2x^2y-2y^3}\)
\(=\frac{x\left(x+4\right)+2y\left(x+y\right)}{x\left(x^2-y^2\right)+2y\left(x^2-y^2\right)}\)
\(=\frac{\left(x+y\right)\left(x+2y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)
\(=\frac{\left(x+y\right)\left(x+2y\right)}{\left(x-y\right)\left(x+y\right)\left(x+2y\right)}\)
\(=\frac{1}{x-y}\)
a: Ta có: \(\left(8x^3-4x^2\right):4x-\left(4x^2-5x\right):2x+\left(2x\right)^2\)
\(=2x^2-x-2x+\dfrac{5}{2}+4x^2\)
\(=6x^2-3x+\dfrac{5}{2}\)
b: Ta có: \(\left(3x^3-x^2y\right):x^2-\left(xy^2+x^2y\right):xy+2x\left(x-1\right)\)
\(=3x-y-y-x+2x^2-2x\)
\(=2x^2-2y\)
\(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(=\frac{\left(x^2+2xy+y^2\right)+xy+y^2}{\left(x^3+x^2y+xy^2+y^3\right)+x^2y-2xy^2-3y^3}\)
\(=\frac{\left(x+y\right)^2+y\left(x+y\right)}{\left(x+y\right)^3+y.\left(x^2-2xy-2y^2\right)}\)