K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{x+5}{2015}+\frac{x+6}{2014}+\frac{x+7}{2013}+\frac{x+8}{2012}+\frac{x+9}{2011}+5=0\)

\(\Rightarrow1+\frac{x+5}{2015}+1+\frac{x+6}{2014}+1+\frac{x+7}{2013}+1+\frac{x+8}{2012}+1+\frac{x+9}{2011}=0\)

\(\Rightarrow\frac{x+2020}{2015}+\frac{x+2020}{2014}+\frac{x+2020}{2013}+\frac{x+2020}{2012}+\frac{x+2020}{2011}=0\)

\(\Rightarrow\left(x+2020\right)\left(\frac{1}{2015}+\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}\right)=0\)

\(\Rightarrow x+2020=0\)

\(\Rightarrow x=-2020\)

Study well 

2 tháng 9 2019

chuyên toán thcs

Thiếu giải thích

22 tháng 7 2018

a, Bạn cộng mỗi tỉ số với 1 rồi chuyển vế phải sang vế trái, ta được:

(x+2016)(1/2011 +1/2012 -1/2013 -1/2014) =0

Ta thấy thừa số thứ hai lớn hơn 0 nên x+2016=0

Vậy x=-2016

b, Bạn chuyển vế phải sang vế trái, ta có:

(5x-1,45)(1/6 +1/7 +1/8 -1/9 +1/10)=0

Thừa số thứ 2 lớn hơn 0 do đó:  5x -1,45 =0

                                                5x =1,45

                                                 x =0,29

Vậy x =0,29

Mong bạn hiểu cách giải của mình.

Chúc bạn học tốt.

13 tháng 12 2015

cộng 1 vào mỗi tỉ số ta được:

\(\frac{x+1}{2016}+1+\frac{x+2}{2015}+1+\frac{x+3}{2014}+1=\frac{x+4}{2013}+1+\frac{x+5}{2012}+\frac{x+6}{2011}\)

=>\(\frac{x+1}{2016}+\frac{2016}{2016}+\frac{x+2}{2015}+\frac{2015}{2015}+\frac{x+3}{2014}+\frac{2014}{2014}=\frac{x+4}{2013}+\frac{2013}{2013}+\frac{x+5}{2012}+\frac{2012}{2012}+\frac{x+6}{2011}+\frac{2011}{2011}\)

=>

\(\frac{x+2017}{2016}+\frac{x+2017}{2015}+\frac{x+2017}{2014}=\frac{x+2017}{2013}+\frac{x+2017}{2012}+\frac{x+2017}{2011}\)

=>

\(\frac{x+2017}{2016}+\frac{x+2017}{2015}+\frac{x+2017}{2014}-\left(\frac{x+2017}{2013}+\frac{x+2017}{2012}+\frac{x+2017}{2011}\right)=0\)

=>

\(\frac{x+2017}{2016}+\frac{x+2017}{2015}+\frac{x+2017}{2014}-\frac{x+2017}{2013}-\frac{x+2017}{2012}-\frac{x+2017}{2011}=0\)

=>(x+2017).(1/1016+1/2015+1/2014-1/2013-1/2012-1/2011)=0

dễ thấy 1/2016<1/2015<1/2014<1/2013<1/2012<1/2011

=>1/2016+...-1/2011 khác 0

=>x+2017=0

=>x=-2017

nhớ tick

11 tháng 2 2020

a) \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)

\(\Rightarrow\frac{x+1}{9}+1+\frac{x+2}{8}+1=\frac{x+3}{7}+1+\frac{x+4}{6}+1\)

\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{8}=\frac{x+10}{7}+\frac{x+10}{6}\)

\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)

\(\Rightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)

Mà \(\left(\frac{1}{9}< \frac{1}{8}< \frac{1}{7}< \frac{1}{6}\right)\)nên \(\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)< 0\)

\(\Rightarrow x+10=0\Rightarrow x=-10\)

Vậy x = -10

b) \(\frac{x}{2012}+\frac{x+1}{2013}+\frac{x+2}{2014}+\frac{x+3}{2015}+\frac{x+4}{2016}=5\)

\(\Rightarrow\frac{x}{2012}-1+\frac{x+1}{2013}-1+\frac{x+2}{2014}-1\)

\(+\frac{x+3}{2015}-1+\frac{x+4}{2016}-1=0\)

\(\Rightarrow\frac{x-2012}{2012}+\frac{x-2012}{2013}+\frac{x-2012}{2014}\)\(+\frac{x-2012}{2015}+\frac{x-2012}{2016}=0\)

\(\Rightarrow\left(x-2012\right)\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)=0\)

Mà \(\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)>0\)nên x - 2012 = 0

Vậy x = 2012

11 tháng 2 2020

a, (x+1)/9 +1 + (x+2)/8  =  (x+3)/7 + 1 + (x+4)/6 + 1

<=> (x+10)/9 +(x+10)/8 = (x+10)/7 + (x+10)/6

<=> (x+10). (1/9 +1/8 - 1/7 -1/6) =0

vì 1/9 +1/8 -1/7 - 1/6 khác 0

=> x+10=0

=> x=-10

Bạn xem lại đề nhé U Suck

9 tháng 8 2018

\(\frac{x-1}{2011}+\frac{x-1}{2012}+\frac{x-1}{2013}=\frac{x-1}{2014}+\frac{x-1}{2015}\)

\(\Rightarrow\frac{x-1}{2011}+\frac{x-1}{2012}+\frac{x-1}{2013}-\frac{x-1}{2014}-\frac{x-1}{2015}=0\)

\(\left(x-1\right).\left(\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)=0\)

mà \(\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\ne0\)

=> x - 1 = 0

x = 1

bn có chép sai đề ko z???

22 tháng 3 2018

\(\frac{x+5}{2012}+\frac{x+4}{2013}=\frac{x+3}{2014}+\frac{x+2}{2015}\)

\(\Leftrightarrow\frac{x+5}{2012}+1+\frac{x+4}{2013}+1=\frac{x+3}{2014}+1+\frac{x+2}{2015}+1\)

\(\frac{x+5+2012}{2012}+\frac{x+4+2013}{2013}=\frac{x+3+2014}{2014}+\frac{x+2+2015}{2015}\)

\(\frac{x+2017}{2012}+\frac{x+2017}{2013}=\frac{x+2017}{2014}+\frac{x+2017}{2015}\)

\(\frac{x+2017}{2012}+\frac{x+2017}{2013}-\frac{x+2017}{2014}-\frac{x+2017}{2015}=0\)

\(\left(x+2017\right)\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)=0\)

Mà \(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}>0\)

\(\Rightarrow x+2017=0\)

\(\Rightarrow x=-2017\)

22 tháng 3 2018

\(\frac{x+5}{2012}+1+\frac{x+4}{2013}+1=\frac{x+3}{2014}+1+\frac{x+2}{2015}+1\)

\(\frac{x+2017}{2012}+\frac{x+2017}{2013}-\frac{x+2017}{2014}-\frac{x+2017}{2015}=0\)

\(\left(x+2017\right)\cdot\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)\)

Vì \(\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)\ne0\)

suy ra \(x+2017=0\)

suy ra  \(x=-2017\)

Vậy   \(x=-2017\)

22 tháng 4 2020

Bài 1 : 

Ta có  : 

\(\frac{x+2011}{2013}+\frac{x+2012}{2012}=\frac{x+2010}{2014}+\frac{x+2013}{2011}\)

\(\Rightarrow\left(\frac{x+2011}{2013}+1\right)+\left(\frac{x+2012}{2012}+1\right)=\left(\frac{x+2010}{2014}+1\right)\)

\(+\left(\frac{x+2013}{2011}+1\right)\)

\(\Rightarrow\frac{x+4024}{2013}+\frac{x+4024}{2012}=\frac{x+4024}{2014}+\frac{x+4024}{2011}\)

\(\Rightarrow\frac{x+4024}{2013}+\frac{x+4024}{2012}-\frac{x+4024}{2014}-\frac{x+4024}{2011}=0\)

\(\Rightarrow\left(x+4024\right)\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2014}-\frac{1}{2011}\right)=0\)

\(\Rightarrow x+4024=0\)

\(\Rightarrow x=-4024\)

22 tháng 4 2020

Bài 2 : 

Đặt \(x^2+2x+1=a\Rightarrow a=\left(x+1\right)^2\ge0\)

=> Phương trình trở thành 

\(\frac{a}{a+1}+\frac{a+1}{a+2}=\frac{7}{6}\)

\(\Rightarrow\frac{a}{a+1}.6\left(a+1\right)\left(a+2\right)+\frac{a+1}{a+2}.6\left(a+1\right)\left(a+2\right)=\frac{7}{6}.6\left(a+1\right)\left(a+2\right)\)

\(\Rightarrow6a\left(a+2\right)+6\left(a+1\right)^2=7\left(a+1\right)\left(a+2\right)\)

\(\Rightarrow12a^2+24a+6=7a^2+21a+14\)

\(\Rightarrow5a^2+3a-8=0\)

\(\Rightarrow\left(a-1\right)\left(5a+8\right)=0\)

Vì \(a\ge0\Rightarrow a=1\)

\(\Rightarrow x^2+2x+1=1\)

\(x^2+2x=0\)

\(\Rightarrow x\left(x+2\right)=0\)

\(\Rightarrow x\in\left\{-2,0\right\}\)

25 tháng 8 2016

c)     <=>    \(\frac{x+1}{2016}+1+\frac{x+2}{2015}+1\)\(+\frac{x+3}{2014}+1\)=   \(\frac{x+4}{2013}+1+\frac{x+5}{2012}+1\)\(+\frac{x+6}{2011}\)

        <=>  \(\frac{x+1+2016}{2016}+\frac{x+2+2015}{2015}+\frac{x+3+2014}{2014}\)  \(=\frac{x+4+2013}{2013}+\frac{x+5+2012}{2012}+\frac{x+6+2011}{2011}\)

        <=>     \(\frac{x+2017}{2016}+\frac{x+2017}{2015}+\frac{x+2017}{2014}-\frac{x+2017}{2013}-\frac{x+2017}{2012}-\frac{x+2017}{2011}=0\)

      <=>       \(\left(x+2017\right)\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}-\frac{1}{2011}\right)=0\)

     vì    \(\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}-\frac{1}{2011}\right)\)khác 0    

   =>     \(x+2017=0\) =>   \(x=-2017\)

           Vậy \(S=\left\{-2017\right\}\)

11 tháng 9 2016

Sao ấn được phân soos vậy?