\(\frac{1}{MN^2}=\frac{1}{MD^2}+\frac{1}{ME^2}\)
tính biểu thức này khi
MD=\(\frac{a}{2}\) ME=a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{a}{a-1}-\frac{1}{a^2-a}\right)=\frac{a^2-1}{a^2-a}=\frac{a+1}{a}\)
ở phàn a+/a thiếu số 1 nhé
\(\frac{1}{a+1}+\frac{2}{a^2-1}=\frac{a-1+2}{a^2-1}=\frac{1}{a-1}\)
=> K =\(\frac{a^2-1}{a}\)
đkxđ: a khác +-1
b, thay vào mà tình
a/ \(K=\left(\frac{a}{a-1}-\frac{1}{a^2-a}\right):\left(\frac{1}{a+1}+\frac{2}{a^2-1}\right)\)
\(=\left(\frac{a}{a-1}-\frac{1}{a\left(a-1\right)}\right):\left(\frac{1}{a+1}+\frac{2}{\left(a-1\right)\left(a+1\right)}\right)\)
\(=\frac{a^2-1}{a\left(a-1\right)}:\frac{a-1+2}{\left(a-1\right)\left(a+1\right)}\)
\(=\frac{\left(a-1\right)\left(a+1\right)}{a\left(a-1\right)}.\frac{\left(a-1\right)\left(a+1\right)}{a-1}\)
\(=\frac{a+1}{a}.a+1\)
\(=\frac{\left(a+1\right)^2}{a}\)
b, Thay a=1/2
\(\Rightarrow\frac{\left(\frac{1}{2}+1\right)^2}{\frac{1}{2}}=\frac{\frac{9}{4}}{\frac{1}{2}}=\frac{9}{2}\)
1)
ĐKXĐ: x\(\ne\)3
ta có :
\(\frac{x^2-6x+9}{2x-6}=\frac{\left(x-3\right)^2}{2\left(x-3\right)}=\frac{x-3}{2}\)
để biểu thức A có giá trị = 1
thì :\(\frac{x-3}{2}\)=1
=>x-3 =2
=>x=5(thoả mãn điều kiện xác định)
vậy để biểu thức A có giá trị = 1 thì x=5
1)
\(A=\frac{x^2-6x+9}{2x-6}\)
A xác định
\(\Leftrightarrow2x-6\ne0\)
\(\Leftrightarrow2x\ne6\)
\(\Leftrightarrow x\ne3\)
Để A = 1
\(\Leftrightarrow x^2-6x+9=2x-6\)
\(\Leftrightarrow x^2-6x-2x=-6-9\)
\(\Leftrightarrow x^2-8x=-15\)
\(\Leftrightarrow x=3\) (loại vì không thỏa mãn ĐKXĐ)
ĐKXĐ:...
\(E=\frac{\sqrt{x+2+2\sqrt{\left(x+2\right)\left(x-2\right)}+x-2}}{\sqrt{\left(x+2\right)\left(x-2\right)}+x+2}\)
\(=\frac{\sqrt{\left(\sqrt{x+2}+\sqrt{x-2}\right)^2}}{\sqrt{x+2}\left(\sqrt{x-2}+\sqrt{x+2}\right)}=\frac{1}{\sqrt{x+2}}\)
Câu sau đề đúng ko bạn? Thế này thì ko rút gọn được, tử số là \(\frac{3}{\sqrt{1+a}}+\sqrt{1-a}\) thì mới rút được
Lời giải:
a) ĐK: $a>0; a\neq 1$
b)
\(B=\left(\frac{\sqrt{a}+2}{(\sqrt{a}+1)^2}-\frac{\sqrt{a}-2}{a-1}\right).\frac{\sqrt{a}+1}{\sqrt{a}}=\frac{\sqrt{a}+2}{(\sqrt{a}+1)^2}.\frac{\sqrt{a}+1}{\sqrt{a}}-\frac{\sqrt{a}-2}{a-1}.\frac{\sqrt{a}+1}{\sqrt{a}}\)
\(=\frac{\sqrt{a}+2}{\sqrt{a}(\sqrt{a}+1)}-\frac{(\sqrt{a}-2)(\sqrt{a}+1)}{\sqrt{a}(a-1)}=\frac{(\sqrt{a}+2)(\sqrt{a}-1)}{(a-1)\sqrt{a}}-\frac{(\sqrt{a}-2)(\sqrt{a}+1)}{\sqrt{a}(a-1)}\)
\(=\frac{(a+\sqrt{a}-2)-(a-\sqrt{a}-2)}{(a-1)\sqrt{a}}=\frac{2\sqrt{a}}{\sqrt{a}(a-1)}=\frac{2}{a-1}\) (đpcm)