Tìm GTNN của:
\(\frac{x+8}{\sqrt{x}+1}\)
10 tik nha !!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x-\sqrt{x}-2=\left(\sqrt{x}\right)^2-2.\sqrt{x}.\frac{1}{2}+\left(\frac{1}{2}\right)^2-2,25=\left(\sqrt{x}-\frac{1}{2}\right)^2-2,25\ge2,25\forall x\ge0\)
ĐK: \(x\ge-2\)
\(B=x-\sqrt{x+2}=x+2-2.\sqrt{x+2}.\frac{1}{2}+\left(\frac{1}{2}\right)^2-2,25=\left(\sqrt{x+2}-\frac{1}{2}\right)^2-2,25\ge-2,25\forall x\ge-2\)........
1/ \(C=\frac{x+9}{10\sqrt{x}}=\frac{\sqrt{x}}{10}+\frac{9}{10\sqrt{x}}\ge2.\frac{3}{10}=0,6\)
Đạt được khi x = 9
2/ \(E=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=x-3\sqrt{x}+2\)
\(=\left(x-\frac{2.\sqrt{x}.3}{2}+\frac{9}{4}\right)-\frac{1}{4}\)
\(=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Vậy GTNN là \(-\frac{1}{4}\)đạt được khi \(x=\frac{9}{4}\)
Không có GTLN nhé
Đặt \(t=\sqrt{x},t\ge0\)
Dấu "=" xảy ra khi t = 1 <=> x = 1
B đạt giá trị nhỏ nhất bằng 7 tại x = 1
a)P=(x + căn x +1)/căn x
b)x=4 rồi thay vào
c)(x + căn x +1)/ căn x= căn x +1 +(1/căn x)
A/d BĐT Cô-Si => căn x +(1/căn x) >=2 => P>=3
Dấu "=" xảy ra <=> căn x= 1/căn x <=> x=1
d) bạn tự giải ra nhé
\(M=\frac{x+8}{\sqrt{x}+1}=\frac{\sqrt{x}^2-1+9}{\sqrt{x}+1}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+9}{\sqrt{x}+1}=\sqrt{x}-1+\frac{9}{\sqrt{x}+1}\)
\(=\sqrt{x}+1+\frac{9}{\sqrt{x}+1}-2\)
Áp dụng bất đẳng thức Cauchy - Schwarz ta có :
\(M\ge2\sqrt{\left(\sqrt{x}+1\right).\frac{9}{\sqrt{x}+1}}-2=2.3-2=4\)
Dấu "=" xảy ra <=> \(\sqrt{x}+1=\frac{9}{\sqrt{x}+1}\Rightarrow x=4\)
Vậy GTNN của M là 4 tại x = 4
#)Góp ý :
Tham khảo : Câu hỏi của Trần Văn Quyết - Toán lớp 9 - Học toán với OnlineMath
Link : https://olm.vn/hoi-dap/detail/84624480607.html
Link ảnh: https://i.imgur.com/3zkYCGa_d.jpg?maxwidth=640&shape=thumb&fidelity=medium