K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2019

Ta có:

\({\sqrt{a} \ }\)> hoặc = 0

<=> \( {\sqrt{a} \over a+1}\)> hoặc = 0

Vậy GTNN của phân thức trên bằng 0 tại a = 0

27 tháng 8 2015

Điều kiện xác định \(a>0,a\ne1.\)

Ta có \(A=\left(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right)\cdot\frac{a}{\sqrt{a}+1}=\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\cdot\frac{a}{\sqrt{a}+1}\)

\(=\frac{a-1}{\sqrt{a}}\cdot\frac{a}{\sqrt{a}+1}=\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\cdot\frac{a}{\sqrt{a}+1}=\sqrt{a}\left(\sqrt{a}-1\right)=a-\sqrt{a}.\)

Vậy \(A=a-\sqrt{a}=\left(\sqrt{a}-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}.\) Dấu bằng xảy ra khi \(\sqrt{a}=\frac{1}{2}\to a=\frac{1}{4}\). Vậy GTNN của \(A\) là \(\frac{1}{4}.\)
 

10 tháng 7 2018

A= \(\frac{2019}{x-\sqrt{x}+1}\)

Tìm GTLN của A

16 tháng 10 2018

a) ĐKXĐ: \(a>0;a\ne1\)

b) ta có:

\(P=\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{\sqrt{a}+1}{a}\)

\(=\left(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right):\frac{\sqrt{a}+1}{a}\)

\(=\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right):\frac{\sqrt{a}+1}{a}=\frac{a-1}{\sqrt{a}}.\frac{a}{\sqrt{a}+1}\)

\(=\sqrt{a}\left(\sqrt{a}-1\right)\)

c) ta có:

\(P=\sqrt{a}\left(\sqrt{a}-1\right)=a-\sqrt{a}=a-\sqrt{a}+\frac{1}{4}-\frac{1}{4}\)

\(=\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Dấu "=" xảy ra khi : \(a=\frac{1}{4}\)

Vậy min P =-1/4 khi a=1/4

19 tháng 10 2018

55 năm rồi ms thấy m đăng câu hỏi!!

À quên tau xin tự giới thiệu tau là Nguyễn tũn đẹp trai thông minh tài giỏi siêng năng cần cù các kiểu đây!!

Hay hay tau bị mất nick ròi!! 

Ngẫm nghĩ xem quên mật khẩu hay bị hack đây!!

12 tháng 1 2021

\(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}+\frac{3\sqrt{x}+1}{1-x}\)

a) ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{x-1}\)

\(=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2x-2\sqrt{x}-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}-1\right)-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}-1}{\sqrt{x}+1}\)

b) Với x = 4 thỏa mãn ĐKXĐ

\(A=\frac{2\sqrt{4}-1}{\sqrt{4}+1}=\frac{4-1}{2+1}=\frac{3}{3}=1\)

c) Chưa nghĩ ra :<

19 tháng 8 2018

a) ĐKXĐ: \(a\ne1;a\ne0\))

\(A=\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{\sqrt{a+1}}{a}\)

    \(=\left(\frac{\sqrt{a}.\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{\sqrt{a}.\left(\sqrt{a}+1\right)}\right):\frac{\sqrt{a+1}}{a}\)

      \(=\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right):\frac{\sqrt{a+1}}{a}\)

      \(=\frac{a-1}{\sqrt{a}}.\frac{a}{\sqrt{a+1}}=\frac{\sqrt{a}\left(a-1\right)}{\sqrt{a+1}}\)

14 tháng 8 2017

chụi thôi bạn à

14 tháng 8 2017

là sao

26 tháng 9 2019

\(\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-\sqrt{x}}\right):\frac{1}{\sqrt{x}-1}\)

ĐKXĐ : x khác 1 , x lớn hơn hoặc bằng 0

\(=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\frac{1}{\sqrt{x}-1}\)

\(=\left(\frac{\sqrt{x}\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\frac{1}{\sqrt{x}-1}\)

\(=\left(\frac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\frac{1}{\sqrt{x}-1}\)

\(=\frac{x+2}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{1}{\sqrt{x}-1}\)

\(=\frac{x+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\frac{\sqrt{x}-1}{1}=\frac{x+2}{\sqrt{x}}\)

b/ \(A=2=\frac{x+2}{\sqrt{x}}\)

\(\Rightarrow2\sqrt{x}=x+2\)

\(\Rightarrow x-2\sqrt{x}+2=0\)

\(\Rightarrow x-2\sqrt{x}+1+1=0\)

\(\Rightarrow\left(\sqrt{x}-1\right)^2+1=0\)

\(\Rightarrow\left(\sqrt{x}-1\right)^2=-1\)

\(\left(\sqrt{x}-1\right)^2\ge0\)(ko thỏa mãn)

P/s ko bik phải làm sai ko mà tính ko ra @*@ bạn xem sai chỗ nào để mik sửa ạ