K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2018

a) ĐKXĐ: \(a>0;a\ne1\)

b) ta có:

\(P=\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{\sqrt{a}+1}{a}\)

\(=\left(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right):\frac{\sqrt{a}+1}{a}\)

\(=\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right):\frac{\sqrt{a}+1}{a}=\frac{a-1}{\sqrt{a}}.\frac{a}{\sqrt{a}+1}\)

\(=\sqrt{a}\left(\sqrt{a}-1\right)\)

c) ta có:

\(P=\sqrt{a}\left(\sqrt{a}-1\right)=a-\sqrt{a}=a-\sqrt{a}+\frac{1}{4}-\frac{1}{4}\)

\(=\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Dấu "=" xảy ra khi : \(a=\frac{1}{4}\)

Vậy min P =-1/4 khi a=1/4

19 tháng 10 2018

55 năm rồi ms thấy m đăng câu hỏi!!

À quên tau xin tự giới thiệu tau là Nguyễn tũn đẹp trai thông minh tài giỏi siêng năng cần cù các kiểu đây!!

Hay hay tau bị mất nick ròi!! 

Ngẫm nghĩ xem quên mật khẩu hay bị hack đây!!

12 tháng 12 2016

Điều kiện: \(\hept{\begin{cases}a>0\\\sqrt{a}-1\ne0\\\sqrt{a}-2\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}a>0\\a\ne1\\a\ne4\end{cases}}\)

Ta có:

\(1P=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1-a+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)\)

\(=\frac{\sqrt{a}-2}{\sqrt{a}}\)

29 tháng 6 2018

không hiểu nhan

9 tháng 7 2019

a

\(ĐKXĐ:a\ne0;a\ne1;a\ne\sqrt{2}\)

\(Q=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(Q=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)

\(Q=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1-a+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)

\(Q=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{1}\)

\(Q=\frac{\sqrt{a}-2}{\sqrt{a}}\)

b

\(Q>0\Leftrightarrow\frac{\sqrt{a}-2}{\sqrt{a}}>0\Leftrightarrow\sqrt{a}-2>0\Leftrightarrow\sqrt{a}>2\Leftrightarrow a>\sqrt{2}\)

4 tháng 7 2017

\(a,ĐKXĐ:\hept{\begin{cases}a>0\\a\ne1\end{cases}}\)

\(b,A=\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)\left(\frac{a-\sqrt{a}}{\sqrt{a}+1}-\frac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)

\(=\frac{a-1}{2\sqrt{a}}.\left(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}+1}-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}-1}\right)\)

\(=\frac{a-1}{2\sqrt{a}}.\frac{\sqrt{a}.\left(\sqrt{a}-1\right)^2-\sqrt{a}\left(\sqrt{a}+1\right)^2}{a-1}\)

\(=\frac{\sqrt{a}\left(\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2\right)}{2\sqrt{a}}\)

\(=\frac{\sqrt{a}.\left(\sqrt{a}-1-\sqrt{a}-1\right).\left(\sqrt{a}-1+\sqrt{a}+1\right)}{2\sqrt{a}}\)

\(=\frac{\sqrt{a}.\left(-2\right).2\sqrt{a}}{2\sqrt{a}}\)

\(=-2\sqrt{a}\)

\(c,\)Để A= -4 thì 

\(-2\sqrt{a}=-4\Leftrightarrow\sqrt{a}=2\Leftrightarrow a=4\)

Kết bạn với mình nha ....

I don't now 

sorry 

...................

nha

27 tháng 7 2018

lượn cho nước nó trong

19 tháng 8 2018

a) ĐKXĐ: \(a\ne1;a\ne0\))

\(A=\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{\sqrt{a+1}}{a}\)

    \(=\left(\frac{\sqrt{a}.\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{\sqrt{a}.\left(\sqrt{a}+1\right)}\right):\frac{\sqrt{a+1}}{a}\)

      \(=\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right):\frac{\sqrt{a+1}}{a}\)

      \(=\frac{a-1}{\sqrt{a}}.\frac{a}{\sqrt{a+1}}=\frac{\sqrt{a}\left(a-1\right)}{\sqrt{a+1}}\)

21 tháng 8 2018

a) Điều kiện xác định : \(a>0\)\(a\ne1\)

b) Ta có : 

\(A=\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{\sqrt{a}+1}{a}=\left(\frac{\sqrt{a}.\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{\sqrt{a}.\left(\sqrt{a}+1\right)}\right).\frac{a}{\sqrt{a}+1}\)

\(=\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right).\frac{a}{\sqrt{a}+1}=\frac{a-1}{\sqrt{a}}.\frac{a}{\sqrt{a}+1}=\frac{a.\left(\sqrt{a}-1\right).\left(\sqrt{a}+1\right)}{\sqrt{a}.\left(\sqrt{a}+1\right)}\)

\(=\sqrt{a}.\left(\sqrt{a}-1\right)=a-\sqrt{a}\)

c)

Ta có :  \(A=a-\sqrt{a}=\left(a-2.\frac{1}{2}.\sqrt{a}+\frac{1}{4}\right)-\frac{1}{4}=\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{1}{4}\)

Vì \(a>0\)và  \(a\ne1\)nên \(\left(\sqrt{a}-\frac{1}{2}\right)^2\ge0\)

\(\Rightarrow\)  \(A=\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Vậy \(Min_A=-\frac{1}{4}\) khi và chỉ khi \(\sqrt{a}-\frac{1}{2}=0\Rightarrow\sqrt{a}=\frac{1}{2}\Rightarrow a=\frac{1}{4}\)

2 tháng 9 2018

a,

\(A\Leftrightarrow\)\(\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\left(\sqrt{x}\right)^2+2\sqrt{x}+1}\right)\)\(\times\frac{x-1}{\sqrt{x}-3}\)

\(\Leftrightarrow\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)^2}\right)\)\(\times\frac{x-1}{\sqrt{x}-3}\)(1)

Để A xđ <=> \(\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\\\sqrt{x}-3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\\x\ne9\end{cases}}\)

b , (1) <=> \(\left(\frac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right)\)\(\times\frac{x-1}{\sqrt{x}-3}\)

<=> \(\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1-\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right)\)\(\times\frac{x-1}{\sqrt{x}-3}\)

<=> \(\frac{2}{x-1}\times\frac{x-1}{\sqrt{x}-3}\)

<=> \(\frac{2}{\sqrt{x}-3}\)