2) Tìm các chữ số a,b,c biết rằng \(\sqrt{\overline{abc}}=\left(a+b\right)\sqrt{c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng bất đẳng thức côsi
a+b >= 2\(\sqrt{ab}\)
<=> (a+b).\(\sqrt{c}\)>=2.\(\sqrt{abc}\)
Mà \(\sqrt{abc}\)= (a+b) .\(\sqrt{c}\) nên a=b , \(\sqrt{c}\)= 2.\(\sqrt{c}\)
<=> c = 0 và với mọi a,b
\(BĐT\Leftrightarrow\sqrt{\left(a^2b+b^2c+c^2\right)\left(ab^2+bc^2+ca^2\right)}\ge abc\)
\(+\sqrt[3]{abc\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)}\)
Đặt \(P=\sqrt{\left(a^2b+b^2c+c^2\right)\left(ab^2+bc^2+ca^2\right)}\)
Áp dụng BĐT Bunhiacopski:
\(\left(a^2b+b^2c+c^2a\right)\left(ab^2+bc^2+ca^2\right)\ge\left(\text{ Σ}_{cyc}ab\sqrt{ab}\right)^2\)
\(\Rightarrow P\ge ab\sqrt{ab}+bc\sqrt{bc}+ca\sqrt{ca}\)(1)
Lại áp dụng BĐT Bunhiacopski:
\(\left(a^2b+b^2c+c^2a\right)\left(bc^2+ca^2+ab^2\right)\ge\left(3abc\right)^2\)
\(\Rightarrow P\ge3abc\)(2)
Tiếp tục áp dụng BĐT Bunhiacopski:
\(\left(a^2b+b^2c+c^2a\right)\left(ca^2+b^2a+c^2b\right)\ge\left(\text{Σ}_{cyc}a^2\sqrt{bc}\right)^2\)
\(\Rightarrow P\ge a^2\sqrt{bc}+b^2\sqrt{ca}+c^2\sqrt{ab}\)(3)
Từ (1), (2), (3) suy ra \(3P\ge3abc+\left[\text{Σ}_{cyc}\left(a^2\sqrt{bc}+bc\sqrt{bc}\right)\right]\)
Sử dụng một số phép biến đổi và bđt Cô - si cho 3 số , ta được:
\(3P\ge3abc+3\sqrt[3]{abc\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)}\)
\(\Rightarrow P\ge abc+\sqrt[3]{abc\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)}\)
hay \(\sqrt{\left(a^2b+b^2c+c^2\right)\left(ab^2+bc^2+ca^2\right)}\)
\(\ge abc+\sqrt[3]{abc\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)}\)
Dấu "=" khi a = b = c > 0
P/S: Không biết đúng không nữa, chưa check lại
2.
Đặt \(\left\{{}\begin{matrix}2n+2003=k^2\\3n+2005=q^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3k^2=6n+6009\\2q^2=6n+4010\end{matrix}\right.\)
\(\Leftrightarrow3k^2-2q^2=1999\)(*)
Vì 1999 là số lẻ, \(2q^2\) là số chẵn do đó \(3k^2\) phải là số lẻ
\(\Rightarrow k^2\) lẻ \(\Leftrightarrow k\) lẻ
Đặt \(k=2a+1\)
(*) \(\Leftrightarrow3\left(2a+1\right)^2-2q^2=1999\)
\(\Leftrightarrow3\left(4a^2+4a+1\right)-2q^2=1999\)
\(\Leftrightarrow12a^2+12a+3-2q^2=1999\)
\(\Leftrightarrow12a^2+12a-2q^2=1996\)
\(\Leftrightarrow2q^2=12a^2+12a-1996\)
\(\Leftrightarrow q^2=6a^2+6a-998\)
\(\Leftrightarrow q^2=6a\left(a+1\right)-998\)
Vì \(a\left(a+1\right)\) là tích 2 số liên tiếp nên \(a\left(a+1\right)⋮2\)
Do đó \(6a\left(a+1\right)=3\cdot2a\left(a+1\right)⋮4\)
Mà 998 chia 4 dư 2
Vì vậy \(6a\left(a+1\right)-998\) chia 4 dư 2
Mặt khác \(q^2\) là số chính phương nên \(q^2\) chia 4 không dư 2
Vậy không có giá trị nào của \(n\) thỏa mãn đề bài.
@Akai Haruma, @Nguyễn Việt Lâm, tth, Trần Thanh Phương,
Nguyễn Văn Đạt, svtkvtm, buithianhtho, Lê Thảo, lê thị hương giang
Giúp mk vs nha! Cảm ơn nhiều!
1) Áp dụng BĐT bun-hi-a-cốp-xki ta có:
\(\left(a+d\right)\left(b+c\right)\ge\left(\sqrt{ab}+\sqrt{cd}\right)^2\)
\(\Leftrightarrow\sqrt{\left(a+d\right)\left(b+c\right)}\ge\sqrt{ab}+\sqrt{cd}\)( vì a,b,c,d dương )
Dấu " = " xảy ra \(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)