Tam giác ABC có AC > AB, tia phân giác của góc A cắt BC ở D. Trên AC lấy điểm E sao cho AE = AB. Cm AD vuông góc với BE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có AE=AB nên tam giác ABE cân ở A
mà AD là phân giác cuả góc BAE
suy ra AD là đương phân giác của tam giác ABE
do đó AD đồng thời là đường trung trực của BE
vậy ADvuoong góc với BE
a: Xét ΔBAM và ΔBEM có
BA=BE
\(\widehat{ABM}=\widehat{EBM}\)
BM chung
Do đó: ΔBAM=ΔBEM
Suy ra: MA=ME
a) Ta có: \(BC^2=13^2=169\)
\(AB^2+AC^2=5^2+12^2=169\)
Do đó: \(BC^2=AB^2+AC^2\)(=169)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
Gọi giao điểm của AD và BE là O.
Xét tam giác AEO và tam giác ABO,có:
AE=AB (gt)
Góc EAO=Góc BAO (gt)
AO là cạnh chung
=> Tam giác AEO=Tam giác ABO (c.g.c)
=>Góc AOE= Góc ABO (2 góc tương ứng)
Ta có: Góc AOE + Góc AOB=180o (2 góc bù nhau)
Mà Góc AOE=Góc AOB (cmt)
=> Góc AOE = 90o
=> AD⊥BE tại O
Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
Suy ra: DB=DE
Ta có: AB=AE
nên A nằm trên đường trung trực của BE(1)
Ta có: DB=DE
nên D nằm trên đường trung trực của BE(2)
Từ (1) và (2) suy AD là đường trung trực của BE
hay AD\(\perp\)BE
Ta có:
AB = AE
=> Tam giác ABE cân tại A
Gọi I là giao điểm AD và BE
Xét tam giác ABI và tam giác AEI
AB = AE
Góc BAI = góc EAI
AD: cạnh chung
=> Tam giác ABI = tam giác AEI (c-g-c)
=> Góc AIB = góc AIE (góc tương ứng)
Mà góc AIB + góc AIE = 180 (kề bù)
=> AIB = AIE = 90
=> AD vuông góc với BE
gọi H là giao điểm của BE và AD
xét tam giác ABH và tam giác AEH có:
AB=AE (gt);
góc BAH=góc EAH
(vì H thuộc AD; AD là phân giác góc A)
AH là cạnh chung
=> tam giác ABH = AEH (c.g.c)
=> BH=EH
xét tam giác cân ABE (vì AB=AE) có:
BH=EH ( vì AH là đường trung tuyến)
=> AH cũng là đường cao
=>AH vuông BE
=>AD vuông BE
https://olm.vn/hoi-dap/detail/79807321415.html
Câu hỏi của Tài Phan - Toán lớp 7 - Học toán với Oline Math