K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2019

12 tháng 3 2019

Đáp án B

Gọi x,y lần lượt là số học sinh nữ ở nhóm I và nhóm II. Khi đó số học sinh nam ở nhóm II là  25 − 9 + x − y = 16 − x − y   . Điều kiện để mỗi nhóm đều có học sinh nam và nữ là x ≥ 1, y ≥ 1,16 − x − y ≥ 1 ;    x , y ∈ ℕ .

Xác suất để chọn ra được hai học sinh nam bằng  C 9 1 C 16 − x − y 1 C 9 + x 1 C 16 − x 1 = 0,54

⇔ 9 16 − x − y 9 + x 16 − x = 0,54 ⇔ 144 − 9 x − 9 y 144 + 7 x − x 2 = 0,54 ⇔ y = 184 25 − 71 50 x + 3 50 x 2

Ta có hệ điều kiện sau  x ≥ 1 184 25 − 71 50 x + 3 50 x 2 ≥ 1 16 − x − 184 25 − 71 50 x + 3 50 x 2 ≥ 1 x ∈ ℕ

⇔ x ≥ 1 3 50 x 2 − 71 50 x + 159 25 ≥ 0 − 3 50 x 2 + 21 50 x + 191 25 ≥ 0 x ∈ ℕ ⇔ x ≥ 1 x ≥ 53 3 x ≤ 6 21 − 5 201 6 ≤ x ≤ 21 + 5 201 6 x ∈ ℕ ⇔ 1 ≤ x ≤ 6 x ∈ ℕ

Ta có bảng các giá trị của :

Vậy ta tìm được hai cặp nghiệm nguyên x ; y  thỏa mãn điều kiện là   1 ; 6 và  6 ; 1   .

Xác suất để chọn ra hai học sinh nữ là C x 1 C y 1 C 9 + x 1 C 16 − x 1 = x y 9 + x 16 − x .

Nếu x ; y ∈ 1 ; 6 , 6 ; 1  thì xác suất này bằng 1 25 = 0,04 .

21 tháng 10 2019

Chọn A

Lời giải. Gọi số học sinh nữ trong nhóm A là  x ( x ∈ ℕ * )

Gọi số học sinh nam trong nhóm B là  y ( y ∈ ℕ * )

Suy ra số học sinh nữ trong nhóm B là

25 - 9 - x - y = 16 - x - y

Khi đó, nhóm A có: 9 nam, x nữ và nhóm B có

y nam, 16 - x - y nữ

Xác suất để chọn được hai học sinh nam là

Mặt khác x + y < 16

Vậy xác suất để chọn đươc hai học sinh nữ là

C 1 1 . C 6 1 C 10 1 . C 15 1 = 0 , 04

2 tháng 1 2020

Đáp án B

Gọi số học sinh nữ trong nhóm A là x  ( x ∈ ℕ * )

Gọi số học sinh nam trong nhóm B là y  ( y ∈ ℕ * ) .

=> Số học sinh nữ trong nhóm B là 25 – 9 – x = 16 – x – y => x + y < 16

Khi đó, Nhóm A: 9 nam, x nữ và nhóm B: y nam, 16 – x – y nữ.

Xác suất để chọn được hai học sinh nam là

C 9 1 . C y 1 C 9 + x 1 . C 25 - 9 - x 1 = 0 , 54

⇔ 9 y ( 9 + x ) ( 16 - x ) = 27 50 .

⇒ y = 30 50 ( 9 + x ) ( 16 - x ) ⇒ x < 16 .

Vì  y ∈ ℕ * ⇒ 3 50 ( 9 + x ) ( 16 - x ) ∈ N * .

=> (x, y) = {(1; 9), (6; 9), (11; 6)}.

Mặt khác x + y < 16

( Khi chia nhóm thì A,B có vai trò như nhau nên có 2 cặp thỏa mãn )

Vậy xác suất để chọn đươc hai học sinh nữ là 0,04.

21 tháng 1 2018

Đáp án B.

Không gian mẫu: Số cách chia 15 học sinh thành 5 nhóm, mỗi nhóm 3 học sinh:

n Ω = C 15 3 . C 12 3 . C 9 3 . C 6 3 . C 3 3 5 ! = 1401400.

Vì cả 5 nhóm đều có học sinh giỏi và khá nên sẽ có đúng 1 nhóm có 2 học sinh giỏi, 1 học

sinh khá, các nhóm còn lại đều có 1 giỏi, 1 khá và 1 trung bình.

Số kết quả thỏa mãn: 

n P = C 6 2 . C 5 1 .4 ! .4 ! = 43200.

Xác suất cần tính:

n P n Ω = 216 7007 .

 

27 tháng 3 2018

Đáp án A

Không gian mẫu: C 12 4 . C 8 4 . 1 = 34650  

Chỉ có 3 nữ và chia mỗi nhóm có đúng 1 nữ và 3 nam.

Nhóm 2 có C 3 1 . C 9 3 = 252 cách.

Lúc đó còn lại 2 nữ, 6 nam, nhóm thứ 2 có :

  C 2 1 . C 9 3 = 40 cách chọn.

Cuối cùng còn 4 người là một nhóm: có 1 cách.

Theo quy tắc nhân thì có: 252.40.2=10080 cách.

Vậy xác suất cần tìm là: P = 10080 34650 = 16 55  .

1 tháng 6 2019

Đáp án A

Không gian mẫu  C 12 4 . C 8 4 . 1 = 34650 . Chỉ có 3 nữ và chia mỗi nhóm có đúng 1 nữ và 3 nam.

Nhóm 1 có  C 3 1 . C 9 3 = 252 cách. Lúc đó còn lại 2 nữ, 6 nam, nhóm thứ 2 có  C 2 1 . C 6 3 = 40  cách chọn. Cuối cùng còn 4 người là một nhóm: có 1 cách. Theo quy tắc nhân thì có: 252.440.1 = 10080 cách.

Vậy xác suất cần tìm là  P = 10080 34650 = 16 55 .

25 tháng 8 2019

Chọn C.

Số phần tử của không gian mẫu là   n ( Ω ) = C 9 3 . C 6 3 . C 3 3 .

Gọi X là biến cố “nhóm nào cũng có học sinh giỏi và học sinh khá”

Khi đó, ta xét các chia nhóm như sau:

·        N1: 2 học sinh giỏi, 1 học sinh khá.

·        N2: 1 học sinh giỏi, 1 học sinh khá và

·        1 học sinh trung bình.

·        N3: 1 học sing giỏi, 1 học sinh khá

·        và 1 học sinh trung bình.

Suy ra có 3 . ( C 4 2 . C 3 1 ) . C 2 1 . C 2 1 . C 2 1  cách chia   ⇒ n ( X ) = 3 . C 4 2 . C 3 1 . C 2 1 . C 2 1 . C 2 1 .

Vậy xác suất cần tính là  P = n ( X ) n ( Ω )   = 9 35

21 tháng 4 2018

Gọi A: “mỗi nhóm có đúng một học sinh nữ”.

+) Số cách xếp 3 học sinh nữ vào 3 nhóm là 3! cách.

+) Chọn 3 học sinh nam cho nhóm thứ ba có 1 cách.