Chứng tỏ rằng phân số 2n+1/3n+2 là phân số tối dảm
Giúp mình với, mình gấp lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cố lên nếu ai ko trả lời dc thì mình làm cho
Để 2n+1/3n+2 là ps tối giản thì
Ta có
Gọi ƯC(2n+1; 3n+2)=d
gọi UCLN(2n+1,3n+1)=d
=>6n+2 chia hết cho d
6n+3 chia hết cho d
=>1 chia hết cho d
=>d=1
=>2n+1/3n+1 tối giản
.
Không thể được đâu bạn ơi, giả sử như n = 2, thay vào phân số trên sẽ được kết quả là 8/9 >> không phải là phân số tối giản.
gọi ƯC( 3n+2 và 4n+1) là d
suy ra 3n+2 chia hết cho d và 4n+1 chia hết cho d
suy ra ( 3n+2) - ( 4n +1) chia hết cho d
4(3n+2) - 3(4n+1)chia hết d
12n+8- 12n-3 chia hết d
8-3 chia hết d
5 .............
Vì 3n+2vs 4n+1 là 2 số nguyên tố cung nhau
suy ra d=1
Vậy...............
a) Gọi \(d\inƯC\left(n+1;2n+3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Leftrightarrow2n+2-2n-3⋮d\)
\(\Leftrightarrow-1⋮d\)
\(\Leftrightarrow d\inƯ\left(-1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯC\left(n+1;2n+3\right)=\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(n+1;2n+3\right)=1\)
hay n+1 và 2n+3 là cặp số nguyên tố cùng nhau(đpcm)
Mik mới hc lớp 7, mới vửa hc đồng dư nên không biết áp dụng vào đây đúng không nữa
Ta có đồng dư thức như sau:
\(3n\equiv3n\)( mod n) hoặc \(3n\equiv3n\)(mod 3) suy ra \(3n\equiv3n\)(mod 1)
Suy ra: \(3n\equiv3n+1\cdot1\)(mod 1) . r = 0 đó
Vậy ƯCLN(3n;3n+1)=1. Tức 3n và 3n+1 là 2 số nguyên tốcùng nhau. Suy ra \(\frac{3n}{3n+1}\)là phân số tối giản :)
gọi d là ƯCLN(2n+1;3n+2).theo bài ra ta có:
2n+1 chia hết cho d=>6n+3 chia hết cho d
3n+2 chia hết cho d=>6n+4 chia hết cho d
=>1 chia hết cho d=>d=1
vậy ...
Gọi d ϵ ƯCLN\(\left(\dfrac{2n+1}{3n+2}\right)\)
Nên 2n+1⁝ d và 3n+2 ⁝ d
⇒ 3(2n+1) ⁝ d và 2(3n+2)
⇒ 6n+3 ⁝ d và 6n+4 ⁝ d
⇒ ( 6n+4 - 6n+3) ⁝ d
⇒ 1⁝ d
⇒ d= 1
Vậy:..
Chúc bạn học tốt
Lời giải:
Gọi $d=ƯCLN(2n+3, 3n+5)$
$\Rightarrow 2n+3\vdots d; 3n+5\vdots d$
$\Rightarrow 2(3n+5)-3(2n+3)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
$\Rightarrow ƯCLN(2n+3, 3n+5)=1$
Do đó $\frac{2n+3}{3n+5}$ là phân số tối giản vơ mọi $n\in\mathbb{N}$
GỌI Đ LÀ ƯC (2N+1/3N+2)
=>2N+2 CHIA HẾT CHO Đ=>3(2N+3) CHIA HẾT CHO Đ
=>3N+2CHIA HẾT CHO Đ=>2(3N+4) CHIA HẾT CHO DD
=>(6N+3)-(6N+4) CHIA HẾT CHO Đ
=>1 CHIA HẾT CHO Đ
=>Đ=1
=>2N+1/3N+2 LÀ P/S TỐI GIẢN
Gọi d là ƯCLN 2n+1 và 3n + 2
=> 2n + 1\(⋮\)d => 3(2n + 1)\(⋮\)d => 6n + 3 \(⋮\)d
và 3n + 2\(⋮\) d và 2(3n +2)\(⋮\)d và 6n + 4\(⋮\)d
=> (6n+4) - (6n + 3) \(⋮\)d
=> 6n + 4 - 6n - 3\(⋮\)d
=> 1 \(⋮\)d
=> d\(\in\)Ư(1) = {1;-1}
=> đpcm
Cảm ơn bạn nhiều nha 😘😘