K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

B= \(\frac{3y^2}{-25x^2+20xy-5y^2}=\frac{3y^2}{-y^2-\left(25x^2-20xy+4y^2\right)}=\frac{1}{-\frac{y^2}{3y^2}-\frac{\left(5x-2y\right)^2}{3y^2}}\)

=\(\frac{1}{-\frac{1}{3}-\frac{\left(5x-2y\right)^2}{3y^2}}\)

\(\frac{1}{3}+\frac{\left(5x-2y\right)^2}{3y^2}\ge\frac{1}{3}\) vs mọi x,y và y\(\ne0\)

<=>\(-\frac{1}{3}-\frac{\left(5x-2y\right)^2}{3y^2}\le-\frac{1}{3}\)

<=> \(\frac{1}{-\frac{1}{3}-\frac{\left(5x-2y\right)^2}{3y^2}}\ge-3\) <=> B \(\ge3\)

Dấu "=" xảy ra <=> 5x-2y=0

<=> 5x=2y < => \(x=\frac{2y}{5}\)

Vậy minB=3 <=> \(x=\frac{2y}{5}\)

13 tháng 12 2016

\(\frac{3y^2}{-25x^2+20xy-5y^2}\)=\(\frac{3y^2}{-\left(25x^2-2\cdot5x\cdot2y+4y^2\right)-y^2}\)=\(\frac{3y^2}{-\left(5x-2y\right)^2-y^2}\)với x; y ko đồng thời bằng 0

Do \(\text{-(5x-2y)}^2\) \(\le\)0 với mọi x;y \(\Rightarrow\)-(5x-2y)\(^2\)-y\(^2\)\(\le\)-y\(^2\)\(\Rightarrow\)\(\frac{3y^2}{-\left(5x-2y\right)^2-y^2}\)\(\ge\)-3

Đẳng thức xảy ra\(\leftrightarrow\)5x=2y và x\(\ne\)0;y\(\ne\)0

14 tháng 12 2016

thank bạn nhiều nha vậy là do mình tách sai rồi mình lại để x ra ngoài ở mẫu chứ ko phải y nên ko ra là 5x=2y thank nhiều nhé

15 tháng 1 2022

Giúp tui với mấy bạn ơi