Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=x^2-x+1=x^2-2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Nên GTNN của C là \(\frac{3}{4}\) đặt được khi \(x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
\(D=25x^2+3y^2-10xy+4y+1\)
\(=\left(5x\right)^2-2.5x.y+y^2+2y^2+4y+2-1\)
\(=\left(5x-y\right)^2+2\left(y+1\right)^2-1\ge-1\)
Nên GTNN của D là - 1 đạt được khi \(\hept{\begin{cases}y+1=0\\5x-y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-1\\y=5x\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-1\\x=-\frac{1}{5}\end{cases}}\)
\(B=25x^2+3y^2-10y+11\)
\(=25x^2+3\left(y^2-\frac{10}{3}y+\frac{11}{3}\right)\)
\(=25x^2+3\left(y^2-2.y.\frac{5}{3}+\frac{25}{9}+\frac{8}{9}\right)\)
\(=25x^2+3\left(y-\frac{5}{3}\right)^2+\frac{8}{3}\ge\frac{8}{3}\)
Đẳng thức xảy ra khi x = 0; y = 5/3
Vậy...
Tự tìm Đkxđ nha.
1/(3y^2 - 10y +3) = 6y/(9y^2 - 1) + 2/(1 - 3y)
=>1/(3y^2 -9y -y +3)=6y/(3y- 1)(3y+ 1)- 2(3y+ 1)/(3y - 1)(3y+ 1)
=>1/(y- 3)(3y -1)=-1/(3y -1)(3y +1)
=>(3y+ 1)/(y- 3)(3y -1)(3y+ 1)=(y -3)/(3y- 1)(3y +1)
=>3y+ 1= y- 3
Đến đây tự làm nha
a)ĐKXĐ:\(\hept{\begin{cases}y\ne3\\y\ne\frac{1}{3}\\y\ne-\frac{1}{3}\end{cases}}\)
\(\frac{1}{3y^2-10y+3}=\frac{6y}{9y^2-1}+\frac{2}{1-3y}\)
\(\Leftrightarrow\frac{1}{\left(y-3\right)\left(3y-1\right)}=\frac{6y}{\left(3y-1\right)\left(3y+1\right)}-\frac{2}{3y-1}\)
\(\Leftrightarrow\frac{3y+1}{\left(y-3\right)\left(3y-1\right)\left(3y+1\right)}=\frac{6y\left(y-3\right)}{\left(3y-1\right)\left(3y+1\right)\left(y-3\right)}-\frac{2\left(3y+1\right)\left(y-3\right)}{\left(3y-1\right)\left(3y+1\right)\left(y-3\right)}\)
\(\Rightarrow6y^2-18y-2\left(3y^2-9y+y-3\right)-3y-1=0\)
\(\Leftrightarrow6y^2-18y-6y^2+18y-2y+6-3y-1=0\)
\(\Leftrightarrow5-5y=0\)
\(\Leftrightarrow5y=5\Leftrightarrow y=1\)(t/m ĐKXĐ)
Vậy....
A=\(25x^2+3y^2-10x+11=\)\(\left(5x\right)^2-2.5.x+1^2+3y^2+10=\)\(\left(5x+1\right)^2+3y^2+10\ge10\)
(Vì\(\left(5x+1\right)^2\ge0\forall x\),\(3y^2\ge0\forall y\))
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{-1}{5},y=0\)
Vậy A max=10\(\Leftrightarrow x=\frac{-1}{5},y=0\)
Điều kiện : \(x^2-9\ne0\Rightarrow\orbr{\begin{cases}x-3\ne0\\x+3\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne3\\x\ne-3\end{cases}}\)
Để \(\frac{3x-2}{x^2-9}=0\)
\(\Rightarrow3x-2=0\)
\(\Rightarrow x=\frac{2}{3}\)
\(\frac{3y^2}{-25x^2+20xy-5y^2}\)=\(\frac{3y^2}{-\left(25x^2-2\cdot5x\cdot2y+4y^2\right)-y^2}\)=\(\frac{3y^2}{-\left(5x-2y\right)^2-y^2}\)với x; y ko đồng thời bằng 0
Do \(\text{-(5x-2y)}^2\) \(\le\)0 với mọi x;y \(\Rightarrow\)-(5x-2y)\(^2\)-y\(^2\)\(\le\)-y\(^2\)\(\Rightarrow\)\(\frac{3y^2}{-\left(5x-2y\right)^2-y^2}\)\(\ge\)-3
Đẳng thức xảy ra\(\leftrightarrow\)5x=2y và x\(\ne\)0;y\(\ne\)0
thank bạn nhiều nha vậy là do mình tách sai rồi mình lại để x ra ngoài ở mẫu chứ ko phải y nên ko ra là 5x=2y thank nhiều nhé