Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(25x^2+3y^2-10x+11=\)\(\left(5x\right)^2-2.5.x+1^2+3y^2+10=\)\(\left(5x+1\right)^2+3y^2+10\ge10\)
(Vì\(\left(5x+1\right)^2\ge0\forall x\),\(3y^2\ge0\forall y\))
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{-1}{5},y=0\)
Vậy A max=10\(\Leftrightarrow x=\frac{-1}{5},y=0\)
\(B=25x^2+3y^2-10y+11\)
\(=25x^2+3\left(y^2-\frac{10}{3}y+\frac{11}{3}\right)\)
\(=25x^2+3\left(y^2-2.y.\frac{5}{3}+\frac{25}{9}+\frac{8}{9}\right)\)
\(=25x^2+3\left(y-\frac{5}{3}\right)^2+\frac{8}{3}\ge\frac{8}{3}\)
Đẳng thức xảy ra khi x = 0; y = 5/3
Vậy...
A=25x2+3y^2-10x+11
A=25x^2+3y^2-10x+1+10
A=(25x^2-10x+1)+3y^2+10
A=(5x-1)2+3y2+10
Vì (5x-1)2 > hoặc = 0 với mọi x thuộc Z
Vì 3,y^2 luôn > hoặc = 0 với mọi x thuộc Z => 3y2 luôn > hoặc = 0 với mọi x thuộc Z
=> (5x-1)2+3y2> hoặc bằng o với mọi x thuộc Z
=> (5x-1)2+3y2+10 luôn lớn hơn hoặc bằng 10 với mọi x thuộc Z
A luôn lớn hơn hoặc bằng 10 với mọi x thuộc Z
=> Amin=10
Dấu "=" xảy ra <=> (5x-1)2+3y2=0
=> 5x-1=0
=> 3y2=0
=> x=\(\frac{1}{5}\)
=> y=0
KL Amin=10 <=> x=\(\frac{1}{5}\);y=0
\(\frac{3y^2}{-25x^2+20xy-5y^2}\)=\(\frac{3y^2}{-\left(25x^2-2\cdot5x\cdot2y+4y^2\right)-y^2}\)=\(\frac{3y^2}{-\left(5x-2y\right)^2-y^2}\)với x; y ko đồng thời bằng 0
Do \(\text{-(5x-2y)}^2\) \(\le\)0 với mọi x;y \(\Rightarrow\)-(5x-2y)\(^2\)-y\(^2\)\(\le\)-y\(^2\)\(\Rightarrow\)\(\frac{3y^2}{-\left(5x-2y\right)^2-y^2}\)\(\ge\)-3
Đẳng thức xảy ra\(\leftrightarrow\)5x=2y và x\(\ne\)0;y\(\ne\)0
thank bạn nhiều nha vậy là do mình tách sai rồi mình lại để x ra ngoài ở mẫu chứ ko phải y nên ko ra là 5x=2y thank nhiều nhé
A = x2 - 10x + 12
= ( x2 - 10x + 25 ) - 13
= ( x - 5 )2 - 13
( x - 5 )2 ≥ 0 ∀ x => ( x - 5 )2 - 13 ≥ -13
Đẳng thức xảy ra <=> x - 5 = 0 => x = 5
=> MinA = -13 <=> x = 5
B = 6y2 + 4y - 1
= 6( y2 + 2/3y + 1/9 ) - 5/3
= 6( y + 1/3 )2 - 5/3
6( y + 1/3 )2 ≥ 0 ∀ x => 6( y + 1/3 )2 - 5/3 ≥ -5/3
Đẳng thức xảy ra <=> y + 1/3 = 0 => y = -1/3
=> MinB = -5/3 <=> y = -1/3
C = x2 + y2 - 2x - 6y - 1
= ( x2 - 2x + 1 ) + ( y2 - 6y + 9 ) - 11
= ( x - 1 )2 + ( y - 3 )2 - 11
\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y-3\right)^2\ge0\forall y\end{cases}\Rightarrow}\left(x-1\right)^2+\left(y-3\right)^2-11\ge-11\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\y-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
=> MinC = -11 <=> x = 1 ; y = 3
D = 2x2 + 3y2 - x - 3y + 5
= 2( x2 - 1/2x + 1/16 ) + 3( y2 - y + 1/4 ) + 33/8
= 2( x - 1/4 )2 + 3( y - 1/2 )2 + 33/8
\(\hept{\begin{cases}2\left(x-\frac{1}{4}\right)^2\ge0\forall x\\3\left(y-\frac{1}{2}\right)^2\ge0\forall y\end{cases}}\Rightarrow2\left(x-\frac{1}{4}\right)^2+3\left(y-\frac{1}{2}\right)^2+\frac{33}{8}\ge\frac{33}{8}\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{4}=0\\y-\frac{1}{2}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=\frac{1}{2}\end{cases}}\)
=> MinD = 33/8 <=> x = 1/4 ; y = 1/2
TL
3y2+3y+25x2-10x+4
HT
TL:
3y2 + 3y + 25x2 - 10x + 4
~HT~