Rút gọn
C1:√(4+2√3) -√(13+4√3)
C2:√(15-6√6) +√(33+4√3)
C3:√(28+10√3) +√(28-10√3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{4}{24}+\dfrac{7}{6}=\dfrac{4}{24}+\dfrac{28}{24}=\dfrac{4+28}{24}=\dfrac{32}{24}=\dfrac{4}{3}\)
b) \(\dfrac{10}{15}-\dfrac{1}{3}=\dfrac{10}{15}-\dfrac{5}{15}=\dfrac{10-5}{15}=\dfrac{5}{15}=\dfrac{1}{3}\)
c) \(\dfrac{21}{28}-\dfrac{1}{4}=\dfrac{21}{28}-\dfrac{7}{28}=\dfrac{21-7}{28}=\dfrac{14}{28}=\dfrac{1}{2}\)
d) \(\dfrac{35}{40}+\dfrac{5}{8}=\dfrac{35}{40}+\dfrac{25}{40}=\dfrac{35+25}{40}=\dfrac{60}{40}=\dfrac{3}{2}\)
\(a)\dfrac{4}{24}=\dfrac{1}{6} \\ \dfrac{1}{6}+\dfrac{7}{6}\\ =\dfrac{8}{6}=\dfrac{4}{3}\\ b)\dfrac{10}{15}=\dfrac{2}{3}-\dfrac{1}{3}\\ =\dfrac{1}{3}\\ c)\dfrac{21}{28}=\dfrac{3}{4}\\ \dfrac{3}{4}-\dfrac{1}{4}\\ =\dfrac{2}{4}=\dfrac{1}{2}\\ d)\dfrac{35}{40}=\dfrac{7}{8}\\ \dfrac{7}{8}+\dfrac{5}{8}\\ =\dfrac{12}{8}=\dfrac{3}{2}\)
B=2^10*(2*3)^15+3^14*3*5*(2^2)^13/2^19*(2*3^2)^7*3-3^15*2^25
B=2^10*2^15*3^15+3^15+3^15*5*2^26/2^19*2^7*3^14**3-3^15*2^25
B=2^25*3^15+5*2*3^15*2^25/2*2^25*3^15-3^15*2^25
B=1*2^25*3^15+10*2^25*3^15/2*2^25*3^15-2^25*3^15
B=2^25*3^15*(1+10)/2^25*3^15*(2-1)=11/1=11
Ta có: \(C=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
Ta có: \(B=\dfrac{\sqrt{2-\sqrt{3}}+\sqrt{4-\sqrt{15}}+\sqrt{10}}{\sqrt{23-3\sqrt{5}}}\)
\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{8-2\sqrt{15}}+2\sqrt{5}}{3\sqrt{5}-1}\)
\(=\dfrac{\sqrt{3}-1+\sqrt{5}-\sqrt{3}+2\sqrt{5}}{3\sqrt{5}-1}\)
=1
\(a,=\sqrt{6+2\sqrt{3-2\sqrt{3}+1}}\)
\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
\(b,=\sqrt{6-2\sqrt{3+\sqrt{12+2\sqrt{12}+1}}}\)
\(=\sqrt{6-2\sqrt{3+\sqrt{12}+1}}\)
\(=\sqrt{6-2\sqrt{3+2\sqrt{3}+1}}\)
\(=\sqrt{6-2\left(\sqrt{3}+1\right)}=\sqrt{6-2\sqrt{3}-2}=\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{3-2\sqrt{3}+1}=\sqrt{3}-1\)
\(c,=\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{4+2.2\sqrt{3}+3}}}\)
\(=\sqrt{\sqrt{3}+\sqrt{48-10\left(2+\sqrt{3}\right)}}\)
\(=\sqrt{\sqrt{3}+\sqrt{28-10\sqrt{3}}}\)
\(=\sqrt{\sqrt{3}+\sqrt{25-2.5\sqrt{3}+3}}\)
\(=\sqrt{\sqrt{3}+5-\sqrt{3}}=\sqrt{5}\)
\(d,=\sqrt{23-6\sqrt{10+4\sqrt{2-2\sqrt{2}+1}}}\)
\(=\sqrt{23-6\sqrt{6+4\sqrt{2}}}\)
\(=\sqrt{23-6\sqrt{4+2.2\sqrt{2}+2}}\)
\(=\sqrt{23-6\sqrt{\left(2+\sqrt{2}\right)^2}}\)
\(=\sqrt{23-12-6\sqrt{2}}=\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{9-2.3\sqrt{2}+2}=3-\sqrt{2}\)
a) Ta có: \(\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
b) Ta có: \(\sqrt{6-2\sqrt{3+\sqrt{13+4\sqrt{3}}}}\)
\(=\sqrt{6-2\sqrt{4+2\sqrt{3}}}\)
\(=\sqrt{6-2\left(\sqrt{3}+1\right)}\)
\(=\sqrt{4-2\sqrt{3}}=\sqrt{3}-1\)
c) Ta có: \(\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
\(=\sqrt{\sqrt{3}+\sqrt{48-10\left(2+\sqrt{3}\right)}}\)
\(=\sqrt{\sqrt{3}+\sqrt{28-10\sqrt{3}}}\)
\(=\sqrt{\sqrt{3}+5-\sqrt{3}}\)
\(=\sqrt{5}\)
d) Ta có: \(\sqrt{23-6\sqrt{10+4\sqrt{3-2\sqrt{2}}}}\)
\(=\sqrt{23-6\sqrt{10+4\left(\sqrt{2}-1\right)}}\)
\(=\sqrt{23-6\sqrt{6-4\sqrt{2}}}\)
\(=\sqrt{23-6\left(2-\sqrt{2}\right)}\)
\(=\sqrt{11+6\sqrt{2}}\)
\(=3+\sqrt{2}\)
1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+21+22+23+24+25+26+27+28+29+30+31+32+33+34+35+36+37
=(1+37)x37:2
=703
C1: \(\sqrt{\left(4+2\sqrt{3}\right)}-\sqrt{\left(13+4\sqrt{3}\right)}\)
=\(\sqrt{\left(4+2\sqrt{3}\right)}-\sqrt{\left(13+2\sqrt{12}\right)}\)
=\(\sqrt{\left(\sqrt{1}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{1}+\sqrt{12}\right)^2}\)
=\(\left|\sqrt{1}+\sqrt{3}\right|-\left|\sqrt{1}+\sqrt{12}\right|\)
= \(\sqrt{1}+\sqrt{3}-\sqrt{1}+\sqrt{12}\)
=\(-\sqrt{12}+\sqrt{3}\)=\(-\sqrt{3}\)
C2,3 Tương tự