Chứng tỏ rằng :
a) (5.n+7).(4.n+6) chia hết cho 2với mọi n€N
b) (8.n+1).(6.n+5) ko chia hết cho 2 vs mọi n€N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
n2 + n + 6
= n(n + 1) + 6
Ta thấy n(n + 1) là tích 2 số tự nhiên liên tiếp mà tích 2 số tự nhiên liên tiếp không thể có tận cùng là 4; 9
=> n(n + 1) không thể có tận cùng là 4; 9
=> n2 + n không thể có tận cùng là 4; 9
=> n2 + n + 6 không thể có tận cùng là 0; 5
=> n2 + n + 6 không chia hết cho 5
2,
+ n chẵn
=> n(n+5) chẵn
=> n(n+5) chia hết cho 2
+ n lẻ
Mà 5 lẻ
=> n+5 chẵn => chia hết cho 2
=> n(n+5) chia hết cho 2
KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N
3,
A = n2+n+1 = n(n+1)+1
a,
+ Nếu n chẵn
=> n(n+1) chẵn
=> n(n+1) lẻ => ko chia hết cho 2
+ Nếu n lẻ
Mà 1 lẻ
=> n+1 chẵn
=> n(n+1) chẵn
=> n(n+1)+1 lẻ => ko chia hết cho 2
KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)
b, + Nếu n chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
+ Nếu n chia 5 dư 1
=> n+1 chia 5 dư 2
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 2
=> n+1 chia 5 dư 3
=> n(n+1) chia 5 dư 1
=> n(n+1)+1 chia 5 dư 2
+ Nếu n chia 5 dư 3
=> n+1 chia 5 dư 4
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 4
=> n+1 chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)
a) ta có: (n+6)(n+7) là tích của 2 số tự nhiên liên tiếp => trong đó nhất định có một số chia hết cho 2 => tích sẽ luôn luôn chia hết cho 2
b) với n=2k ( n chẵn) => n^2+n+3= 4k^2+2k+3
4k^2 chia hết cho 2k chia hết cho 2 nhưng +3 => k chia hết cho 2
với n=2k+1 ( n lẻ) => n^2+n+3=\(\left(2k+1\right)^2+2k+1+3=4k^2+6k+5\) giải thích như trên
=> k chia hết cho 2 với mọi n
4n + 6 = 2(2n + 3) chia hết cho 2 nên (5n + 7)(4n + 6) chia hết cho 2
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
Bài 2: Với n lẻ thì n+3 chẵn => Cả tích chia hết cho 2
Với n chẵn thì n+6 hcawnx => Cả tích chia hết cho 2
Bài 3: Xét 2 trường hợp n chẵn, lẻ như bài 2
Bài 4 bạn ghi thiếu đề
1:Từ 1 đến 100 có bao nhiêu số chia hết cho 2 , bao nhiêu số chia hết cho 5 ?
2:Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) . ( n + 6 ) chia hết cho 2 ?
3:Chứng tỏ gọi rằng với mọi stn n thì tích n . ( n + 5 ) chia hết cho 2 ?
4: Gọi A = n2 + n + 1 . ( n e N ) ( nghĩa là n thuộc stn bất kì )
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
Bài 1 :
a)
Chứng minh chiều \("\Rightarrow"\) :
Ta có : \(abcd⋮99\Rightarrow ab.100+cd⋮99\)
\(\Rightarrow99ab+ab+cd⋮99\)
Mà : \(99ab⋮99\Rightarrow ab+cd⋮99\) ( đpcm )
Chứng minh chiều \("\Leftarrow"\) :
Ta có : \(ab+cd⋮99\)
\(\Rightarrow99ab+ab+cd⋮99\)
\(\Rightarrow100ab+cd⋮99\)
hay : \(abcd⋮99\) ( đpcm )
b) Ta có :
\(abcd=1000a+100b+10c+d\)
\(=100ab+cd\)
\(=200cd+cd=201cd\)
Mà \(201⋮67\Rightarrow ab=2cd⋮67\) ( đpcm )
c) Gọi số tự nhiên ba chữ số đó là \(aaa\)
Ta có : \(aaa=a.111=a.37.3⋮37\)
\(\Rightarrow\) Mọi số tự nhiên có 3 chữ số giống nhau đều chia hết cho 37 ( đpcm )
a)(5n+7)(4n+6)=20n^2+58n+42
Ta thấy 20;58;42 chia hết cho 2 nên (5n+7)(4n+6) chia hết cho 2
b)(8n+1)(6n+5)=40n^2+46n+5
Ta thấy 20;46 chia hết cho 2 và 5 ko chia hết cho 2 nên (8n+1)(6n+5) ko chia hết cho 2