Cho tứ giác lồi ABCD bất kì. Với số k tuỳ ý lấy 2 điểm M,N sao cho vtAM=k.vtAB, vtDN=k.vtDC. Gọi P,Q lần lượt là trung điểm AD và BC. a) CM: vtPQ=1/2(vtAB+vtDC)
b) tìm tập hợp các trung điểm I của đoạn MN khi k thay đổi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
=
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu củ
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQMa A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc A
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
QM
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
tóm lị là ABGHMN là sai
a: Sửa đề; B đối xứng D qua N
Xét tứ giac ABCD có
N là trung điểm chung của AC và BD
nên ABCD là hình bình hành
=>AB//CD
b: Xét tứ giá AMBP có
I là trung điểm chung của AB và MP
AB vuông góc với MP
Do đó: AMBP là hình thoi
Bài làm
Trên tia KN, kẻ tia đối của tia KN cắt AD tại I.
Gọi giao điểm của NE và AD là H
Xét tứ giác ABCD vuông tại A có: ( Vì ABCD là hcn )
M là trung điểm AD
N là trung điểm BC
=> MN là đường trung bình.
=> MN // AB // DC ( tính chất đường trung bình của một hình tứ giác )
Mà \(AB\perp AD\)
\(CD\perp AD\)
=> \(MN\perp AD\)
Xét tam giác INH có:
MN | AD
M là trung điểm của AD
=> MN là đường trung trực của tam giác INH
=> IN = IH ( tính chất đường trung trực )
=> Tam giác INH là tam giác cân.
Mà MN là đường cao của \(\widehat{INH}\)
hay MN là đường cao của \(\widehat{KNE}\)
=> MN là đường phân giác của \(\widehat{KNE}\) ( đpcm )
# Học tốt #
a) Xét tam giác ABD có:
AD = AB (giả thiết)
=> Tam giác ABD là tam giác cân
=> Góc B = góc D (t/chất của tam giác cân)
Có: Q là tr/điểm AD
M là tr/điểm AB
=> QM // BD (t/chất đg tr/bình của tam giác)
=>Tứ giác QMBD là hình thang
Mà: Góc B = góc D (tam giác ABD là tam giác cân)
=> Hình thang QMBD là hình thang cân
P/s: Mình giải đến đây thôi. Mình thấy câu b "có j đó sai sai"?! Chẳng phải ở trên đã nói M là tr/điểm của AB rồi sao?! Sao ở câu b lại nói I là tr/điểm của AB?! Mình chưa giải câu c vì mik nghĩ đáp án câu b có thế sẽ là manh mối để giải câu c. Mình mong nếu bạn viết nhầm thì mau mau sửa lại để mik giải tiếp!!!! Thân.