Chứng minh : Nếu x,y N sao cho 3x - y + 1 và 2x + 3y đều chia hết cho 7 thì x và y chia cho 7 dư 3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(\left\{\begin{matrix} 3x-y+1\vdots 7\\ 2x+3y-1\vdots 7\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 3(3x-y+1)\vdots 7\\ 2x+3y-1\vdots 7\end{matrix}\right.\)
\(\Rightarrow 3(3x-y+1)+(2x+3y-1)\vdots 7\)
\(\Rightarrow 11x+2\vdots 7\)
\(\Rightarrow 11(x-3)+35\vdots 7\Rightarrow 11(x-3)\vdots 7\Rightarrow x-3\vdots 7\)
\(\Rightarrow x\) chia 7 dư $3$
Đặt $x=7k+3$ thì:
\(3x-y+1\vdots 7\)
\(\Rightarrow 3(7k+3)-y+1\vdots 7\)
\(\Rightarrow 21k+7+3-y\vdots 7\Rightarrow 3-y\vdots 7\)
\(\Rightarrow y-3\vdots 7\) hay $y$ chia $7$ dư $3$
Vậy $x,y$ chia $7$ đều dư $3$
Mấy câu này khá giống nhau làm cho câu mẫu rồi câu sau tự làm nha em =))
a) 3x + 5y ⋮ 7
=> 5.(3x + 5y) ⋮ 7
<=> 15x + 25y ⋮ 7 (1)
Lại có: 14x ⋮ 7; 21y ⋮ 7 => 14x + 21y ⋮ 7 (2)
Lấy (1) trừ (2), ta có:
(15x + 25y) - (14x + 21y) ⋮ 7
<=> x + 4y ⋮ 7
Điều ngược lại đương nhiên là đúng =)))
Chúc em học tốt !!!