K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2019

\(B=5x^2+y^2-4xy-6x+13\)

\(=\left(4x^2-4xy+y^2\right)+\left(x^2-6x+9\right)+4\)

\(=\left(2x-y\right)^2+\left(x-3\right)^2+4\ge4\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\end{matrix}\right.\)

Vậy \(B_{min}=4\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\end{matrix}\right.\)

\(C=9x^2+y^2-2xy-8x+10\)

\(=\left(x^2-2xy+y^2\right)+\left(4x^2-4x+1\right)+\left(4x^2-4x+1\right)+8\)

\(=\left(x-y\right)^2+\left(2x-1\right)^2+\left(2x-1\right)^2+8\ge8\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\2x-1=0\end{matrix}\right.\) \(\Leftrightarrow x=y=\frac{1}{2}\)

Vậy \(C_{max}=8\Leftrightarrow x=y=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
28 tháng 8 2019

Lời giải:
\(A=4x^2+12x+2018=(2x)^2+2.2x.3+3^2+2009\)

\(=(2x+3)^2+2009\)

Vì $(2x+3)^2\geq 0, \forall x\Rightarrow A=(2x+3)^2+2009\geq 2009$

Vậy GTNN của $A$ là $2009$. Giá trị này được xác định tại $(2x+3)^2=0\Leftrightarrow x=\frac{-3}{2}$

------------------

\(B=5x^2+y^2-4xy-6x+13=(4x^2+y^2-4xy)+(x^2-6x+9)+4\)

\(=(2x-y)^2+(x-3)^2+4\)

Vì $(2x-y)^2\geq 0; (x-3)^2\geq 0, \forall x,y$

$\Rightarrow B=(2x-y)^2+(x-3)^2+4\geq 4$

Vậy GTNN của $B$ là $4$. Giá trị này xác định tại $(2x-y)^2=(x-3)^2=0\Leftrightarrow x=3; y=6$

-------------

\(C=9x^2+y^2-2xy-8x+10\)

\(=(x^2+y^2-2xy)+(8x^2-8x)+10\)

\(=(x-y)^2+8(x^2-x+\frac{1}{4})+8=(x-y)^2+8(x-\frac{1}{2})^2+8\)

\(\geq 0+8.0+8=8\)

Vậy GTNN của $C$ là $8$. Giá trị này xác định tại \((x-y)^2=(x-\frac{1}{2})^2=0\Leftrightarrow x=y=\frac{1}{2}\)

29 tháng 8 2019

Đoàn Phương Linh GV á bn

22 tháng 7 2018

\(B=5-8x+x^2=x^2-8x+16-11=\left(x-4\right)^2-11\)

Vậy giá trị nhỏ nhất của B là -11 khi x = 4

22 tháng 7 2018

\(C=x^2+y^2-6x+5y+1=\left(x^2-6x+9\right)+\left(y^2+5y+\frac{25}{4}\right)-\frac{57}{4} \)

                                                           \(=\left(x-3\right)^2+\left(y+\frac{5}{2}\right)^2-\frac{57}{4}\)

Vậy GTNN của C là \(-\frac{57}{4}\)khi x = 3; y = \(-\frac{5}{2}\)

a: \(A=-3\left(x^2-2x+\dfrac{2}{3}\right)\)

\(=-3\left(x^2-2x+1-\dfrac{1}{3}\right)\)

\(=-3\left(x-1\right)^2+1< =1\)

Dấu '=' xảy ra khi x=1

b: \(B=-\left(16x^2+8x-4\right)\)

\(=-\left(16x^2+8x+1-5\right)\)

\(=-\left(4x+1\right)^2+5< =5\)

Dấu '=' xảy ra khi x=-1/4

d: \(x^2+2x+3=\left(x+1\right)^2+2>=2\)

=>E<=1/2

Dấu '=' xảy ra khi x=-1

Tìm GTLN - GTNN của các biểu thức ?* bài 1: Tìm GTNN: a) A= (x - 5)² + (x² - 10x)² - 24 b) B= (x - 7)² + (x + 5)² - 3 c) C= 5x² - 6x +1 d) D= 16x^4 + 8x² - 9 e) A= (x + 1)(x - 2)(x - 3)(x - 6) f) B= (x - 2)(x - 4)(x² - 6x + 6) g) C= x^4 - 8x³ + 24x² - 8x + 25 h) D= x^4 + 2x³ + 2x² + 2x - 2 i) A= x² + 4xy + 4y² - 6x – 12y +4 k) B= 10x² + 6xy + 9y² - 12x +15 l) C= 5x² - 4xy + 2y² - 8x – 16y +83 m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9 * Bài 2: Tìm...
Đọc tiếp

Tìm GTLN - GTNN của các biểu thức ?

* bài 1: Tìm GTNN: 
a) A= (x - 5)² + (x² - 10x)² - 24 
b) B= (x - 7)² + (x + 5)² - 3 
c) C= 5x² - 6x +1 
d) D= 16x^4 + 8x² - 9 

e) A= (x + 1)(x - 2)(x - 3)(x - 6) 
f) B= (x - 2)(x - 4)(x² - 6x + 6) 
g) C= x^4 - 8x³ + 24x² - 8x + 25 
h) D= x^4 + 2x³ + 2x² + 2x - 2 

i) A= x² + 4xy + 4y² - 6x – 12y +4 
k) B= 10x² + 6xy + 9y² - 12x +15 
l) C= 5x² - 4xy + 2y² - 8x – 16y +83 

m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9 

* Bài 2: Tìm GTLN: 
a) M= -7x² + 4x -12 
b) N= -16x² - 3x +14 

c) M= -x^4 + 4x³ - 7x² + 12x -5 
d) N= -(x² + x – 2) (x² +9x+18) +27 

* Bài 3: 
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y² 
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y² 
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³ 

* Bài 4: Tìm GTLN và GTNN của các biểu thức: 
1) A = (3 - 4x)/(x² + 1) 
2) B= (8x + 3)/(4x² + 1) 
3) C= (2x+1)/(x²+2)

0
28 tháng 2 2021

 4-3=2( dân chơi mới hiểu)

22 tháng 6 2021

Chắc là viết thiếu số "1" đấy, sợ lớp 11 còn chưa làm được cơ

 

13 tháng 6 2017

a)\(2x^2+y^2+4x-2y-2xy+10=2x^2+y^2+4x-2y\left(x+1\right)+10\)

\(=y^2-2y\left(x+1\right)+2\left(x^2+2x+1\right)+8\)

\(=y^2-2y\left(x+1\right)+2\left(x+1\right)^2+8\)

\(=\left(y+x+1\right)^2+\left(x+1\right)^2+8\ge8\)

Dấu "=" xảy ra khi x=-1 và y=0

13 tháng 6 2017

b)\(5x^2+y^2+2xy-4x=\left(x^2+2xy+y^2\right)+\left(4x^2-4x+1\right)-1\)

\(=\left(x+y\right)^2+\left(2x-1\right)^2-1\ge-1\)

Dấu "=" xảy ra khi x=1/2 và y=-1/2

2 tháng 7 2017

\(A=x^2-4xy+2x-4y+3+4y^2\)

\(A=x^2-2.2xy+\left(2y\right)^2+2x-4y+3\)

\(A=\left(x-2y\right)^2-2.\left(x-2y\right)+1+2\)

\(A=\left(x-2y-1\right)^2+2\ge2\)

Vậy GTNN của A=2.

2 tháng 8 2017

Phần 1:
Ta thấy: \(B=x^2+2xy+y^2+16=\left(x+y\right)^2+16\)
Do \(\left(x+y\right)^2\ge0\) ( mọi x và y )
\(\Rightarrow\left(x+y\right)^2+16\ge16\) ( mọi x và y )
=> GTNN của biểu thức \(B=\left(x+y\right)^2+16\) bằng 16 khi và chỉ khi:
\(\left(x+y\right)^2=0\)
\(\Rightarrow x+y=0\)
\(\Rightarrow x=-y\)
Vậy GTNN của biểu thức \(B=x^2+2xy+y^2+16\) bằng 16 khi và chỉ khi \(x=-y\).

2 tháng 8 2017

Phần 2:
Ta thấy: \(C=9x^2+6x+y^2+16=9x^2+6x+1+y^2+15=\left(3x+1\right)^2+y^2+15\)
Do \(\left(3x+1\right)^2\ge0\) ( mọi x )
\(y^2\ge0\) ( mọi y )
\(\Rightarrow\left(3x+1\right)^2+y^2\ge0\) ( mọi x và y )
\(\Rightarrow\left(3x+1\right)^2+y^2+15\ge15\) ( mọi x và y )
=> GTNN của \(C=\left(3x+1\right)^2+y^2+15\) bằng 15 khi và chỉ khi:
\(\left(3x+1\right)^2+y^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(3x+1\right)^2=0\\y^2=0\end{cases}}\Rightarrow\hept{\begin{cases}3x+1=0\\y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{-1}{3}\\y=0\end{cases}}\)
Vậy GTNN của biểu thức \(C=9x^2+6x+y^2+16\) bằng 15 khi và chỉ khi \(x=\frac{-1}{3}\) ; \(y=0\).