Tìm GTNN:
B= 5x^2+y^2-4xy-6x+13
C=9x^2+y^2-2xy-8x+10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(A=4x^2+12x+2018=(2x)^2+2.2x.3+3^2+2009\)
\(=(2x+3)^2+2009\)
Vì $(2x+3)^2\geq 0, \forall x\Rightarrow A=(2x+3)^2+2009\geq 2009$
Vậy GTNN của $A$ là $2009$. Giá trị này được xác định tại $(2x+3)^2=0\Leftrightarrow x=\frac{-3}{2}$
------------------
\(B=5x^2+y^2-4xy-6x+13=(4x^2+y^2-4xy)+(x^2-6x+9)+4\)
\(=(2x-y)^2+(x-3)^2+4\)
Vì $(2x-y)^2\geq 0; (x-3)^2\geq 0, \forall x,y$
$\Rightarrow B=(2x-y)^2+(x-3)^2+4\geq 4$
Vậy GTNN của $B$ là $4$. Giá trị này xác định tại $(2x-y)^2=(x-3)^2=0\Leftrightarrow x=3; y=6$
-------------
\(C=9x^2+y^2-2xy-8x+10\)
\(=(x^2+y^2-2xy)+(8x^2-8x)+10\)
\(=(x-y)^2+8(x^2-x+\frac{1}{4})+8=(x-y)^2+8(x-\frac{1}{2})^2+8\)
\(\geq 0+8.0+8=8\)
Vậy GTNN của $C$ là $8$. Giá trị này xác định tại \((x-y)^2=(x-\frac{1}{2})^2=0\Leftrightarrow x=y=\frac{1}{2}\)
\(B=5-8x+x^2=x^2-8x+16-11=\left(x-4\right)^2-11\)
Vậy giá trị nhỏ nhất của B là -11 khi x = 4
\(C=x^2+y^2-6x+5y+1=\left(x^2-6x+9\right)+\left(y^2+5y+\frac{25}{4}\right)-\frac{57}{4} \)
\(=\left(x-3\right)^2+\left(y+\frac{5}{2}\right)^2-\frac{57}{4}\)
Vậy GTNN của C là \(-\frac{57}{4}\)khi x = 3; y = \(-\frac{5}{2}\)
a: \(A=-3\left(x^2-2x+\dfrac{2}{3}\right)\)
\(=-3\left(x^2-2x+1-\dfrac{1}{3}\right)\)
\(=-3\left(x-1\right)^2+1< =1\)
Dấu '=' xảy ra khi x=1
b: \(B=-\left(16x^2+8x-4\right)\)
\(=-\left(16x^2+8x+1-5\right)\)
\(=-\left(4x+1\right)^2+5< =5\)
Dấu '=' xảy ra khi x=-1/4
d: \(x^2+2x+3=\left(x+1\right)^2+2>=2\)
=>E<=1/2
Dấu '=' xảy ra khi x=-1
a)\(2x^2+y^2+4x-2y-2xy+10=2x^2+y^2+4x-2y\left(x+1\right)+10\)
\(=y^2-2y\left(x+1\right)+2\left(x^2+2x+1\right)+8\)
\(=y^2-2y\left(x+1\right)+2\left(x+1\right)^2+8\)
\(=\left(y+x+1\right)^2+\left(x+1\right)^2+8\ge8\)
Dấu "=" xảy ra khi x=-1 và y=0
\(A=x^2-4xy+2x-4y+3+4y^2\)
\(A=x^2-2.2xy+\left(2y\right)^2+2x-4y+3\)
\(A=\left(x-2y\right)^2-2.\left(x-2y\right)+1+2\)
\(A=\left(x-2y-1\right)^2+2\ge2\)
Vậy GTNN của A=2.
Phần 1:
Ta thấy: \(B=x^2+2xy+y^2+16=\left(x+y\right)^2+16\)
Do \(\left(x+y\right)^2\ge0\) ( mọi x và y )
\(\Rightarrow\left(x+y\right)^2+16\ge16\) ( mọi x và y )
=> GTNN của biểu thức \(B=\left(x+y\right)^2+16\) bằng 16 khi và chỉ khi:
\(\left(x+y\right)^2=0\)
\(\Rightarrow x+y=0\)
\(\Rightarrow x=-y\)
Vậy GTNN của biểu thức \(B=x^2+2xy+y^2+16\) bằng 16 khi và chỉ khi \(x=-y\).
Phần 2:
Ta thấy: \(C=9x^2+6x+y^2+16=9x^2+6x+1+y^2+15=\left(3x+1\right)^2+y^2+15\)
Do \(\left(3x+1\right)^2\ge0\) ( mọi x )
\(y^2\ge0\) ( mọi y )
\(\Rightarrow\left(3x+1\right)^2+y^2\ge0\) ( mọi x và y )
\(\Rightarrow\left(3x+1\right)^2+y^2+15\ge15\) ( mọi x và y )
=> GTNN của \(C=\left(3x+1\right)^2+y^2+15\) bằng 15 khi và chỉ khi:
\(\left(3x+1\right)^2+y^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(3x+1\right)^2=0\\y^2=0\end{cases}}\Rightarrow\hept{\begin{cases}3x+1=0\\y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{-1}{3}\\y=0\end{cases}}\)
Vậy GTNN của biểu thức \(C=9x^2+6x+y^2+16\) bằng 15 khi và chỉ khi \(x=\frac{-1}{3}\) ; \(y=0\).
\(B=5x^2+y^2-4xy-6x+13\)
\(=\left(4x^2-4xy+y^2\right)+\left(x^2-6x+9\right)+4\)
\(=\left(2x-y\right)^2+\left(x-3\right)^2+4\ge4\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\end{matrix}\right.\)
Vậy \(B_{min}=4\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\end{matrix}\right.\)
\(C=9x^2+y^2-2xy-8x+10\)
\(=\left(x^2-2xy+y^2\right)+\left(4x^2-4x+1\right)+\left(4x^2-4x+1\right)+8\)
\(=\left(x-y\right)^2+\left(2x-1\right)^2+\left(2x-1\right)^2+8\ge8\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\2x-1=0\end{matrix}\right.\) \(\Leftrightarrow x=y=\frac{1}{2}\)
Vậy \(C_{max}=8\Leftrightarrow x=y=\frac{1}{2}\)