K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 8 2019

Lời giải:
\(A=4x^2+12x+2018=(2x)^2+2.2x.3+3^2+2009\)

\(=(2x+3)^2+2009\)

Vì $(2x+3)^2\geq 0, \forall x\Rightarrow A=(2x+3)^2+2009\geq 2009$

Vậy GTNN của $A$ là $2009$. Giá trị này được xác định tại $(2x+3)^2=0\Leftrightarrow x=\frac{-3}{2}$

------------------

\(B=5x^2+y^2-4xy-6x+13=(4x^2+y^2-4xy)+(x^2-6x+9)+4\)

\(=(2x-y)^2+(x-3)^2+4\)

Vì $(2x-y)^2\geq 0; (x-3)^2\geq 0, \forall x,y$

$\Rightarrow B=(2x-y)^2+(x-3)^2+4\geq 4$

Vậy GTNN của $B$ là $4$. Giá trị này xác định tại $(2x-y)^2=(x-3)^2=0\Leftrightarrow x=3; y=6$

-------------

\(C=9x^2+y^2-2xy-8x+10\)

\(=(x^2+y^2-2xy)+(8x^2-8x)+10\)

\(=(x-y)^2+8(x^2-x+\frac{1}{4})+8=(x-y)^2+8(x-\frac{1}{2})^2+8\)

\(\geq 0+8.0+8=8\)

Vậy GTNN của $C$ là $8$. Giá trị này xác định tại \((x-y)^2=(x-\frac{1}{2})^2=0\Leftrightarrow x=y=\frac{1}{2}\)

29 tháng 8 2019

Đoàn Phương Linh GV á bn

19 tháng 8 2019

\(B=5x^2+y^2-4xy-6x+13\)

\(=\left(4x^2-4xy+y^2\right)+\left(x^2-6x+9\right)+4\)

\(=\left(2x-y\right)^2+\left(x-3\right)^2+4\ge4\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\end{matrix}\right.\)

Vậy \(B_{min}=4\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\end{matrix}\right.\)

\(C=9x^2+y^2-2xy-8x+10\)

\(=\left(x^2-2xy+y^2\right)+\left(4x^2-4x+1\right)+\left(4x^2-4x+1\right)+8\)

\(=\left(x-y\right)^2+\left(2x-1\right)^2+\left(2x-1\right)^2+8\ge8\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\2x-1=0\end{matrix}\right.\) \(\Leftrightarrow x=y=\frac{1}{2}\)

Vậy \(C_{max}=8\Leftrightarrow x=y=\frac{1}{2}\)

27 tháng 9 2016

a) = 9(x2 - 2.x/2.9 + 1/324) - 9/324 +5

GTNN A = 4,97

b) = (2x +y)2 + y2 + 2018

GTNN B = 2018 khi x=0;y=0

c) = -4(x2 - 2.3x/ 4.2 + 9/16) +9/16 +10

GTLN C = 169/16

d) = -(x-y)2 - (2x +1) +1 + 2016

GTLN D = 2017

(trg bn cho bài khó dữ z, làm hại cả não tui)

29 tháng 9 2016

cảm ơn nhiều lắm đấy

Các bạn giải giùm mình gấp với ạ! Mình sắp phải kiểm tra rồi::Cho đa thức f(x) = (2x - 3)2 - (3x + 1) ( x - 1) + 5x + 3   ( Bài này các bạn k làm cx được)a) thu gọn f(x)b) Chứng tỏ f(x) k có nghiệmBài 2: Tìm giá trị nhỏ nhất của các biểu thức sau ( khi x bằng mấy)a) A = x2 - 6x + 10     b) B = 9x2 - 6x -5    c) C = 2x2 - 5x + 5 Các bạn giải giùm mình gấp với ạ! Mình sắp phải kiểm tra rồi::Cho đa thức f(x) =...
Đọc tiếp

Các bạn giải giùm mình gấp với ạ! Mình sắp phải kiểm tra rồi::

Cho đa thức f(x) = (2x - 3)2 - (3x + 1) ( x - 1) + 5x + 3   ( Bài này các bạn k làm cx được)

a) thu gọn f(x)

b) Chứng tỏ f(x) k có nghiệm

Bài 2: Tìm giá trị nhỏ nhất của các biểu thức sau ( khi x bằng mấy)

a) A = x2 - 6x + 10     b) B = 9x2 - 6x -5    c) C = 2x2 - 5x + 5 Các bạn giải giùm mình gấp với ạ! Mình sắp phải kiểm tra rồi::

Cho đa thức f(x) = (2x - 3)2 - (3x + 1) ( x - 1) + 5x + 3   ( Bài này các bạn k làm cx được)

a) thu gọn f(x)

b) Chứng tỏ f(x) k có nghiệm

Bài 2: Tìm giá trị nhỏ nhất của các biểu thức sau ( khi x bằng mấy)

a) A = x2 - 6x + 10     b) B = 9x2 - 6x -5    c) C = 2x2 - 5x + 5

d) D = x4 - 4x2 + 2023     e) E = 5x2 - 4xy + y2 + 8x + 1        f) F = 2x2 - 2xy + y2 + 12x - 4y

 

d) D = x4 - 4x2 + 2023     e) E = 5x2 - 4xy + y2 + 8x + 1        f) F = 2x2 - 2xy + y2 + 12x - 4y

 

 

0
30 tháng 9 2018

a)  \(A=4x^2-12x+2010\)

\(=4x^2-12x+9+2001\)

\(=\left(2x-3\right)^2+2001\ge2001\)

Dấu "=" xảy ra khi:  \(x=\frac{3}{2}\)

Vậy....

3 tháng 8 2017

\(A=x^2+2xy+y^2+16=\left(x+y\right)^2+16\ge16\forall x\)Vậy Min A = 16 khi \(x+y=0\Rightarrow x=-y\)

\(B=9x^2+6x+y^2+4x+16=\left(9x^2+6x+1\right)+\left(y^2+4x+4\right)+11\)

\(=\left(3x+1\right)^2+\left(y+2\right)^2+11\ge11\forall x\)

Vậy Min B = 11 khi \(\left\{{}\begin{matrix}3x+1=0\\y+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\y=-2\end{matrix}\right.\)

\(C=4x^2+4x+5y^2+5y=\left(4x^2+4x+1\right)+5\left(y^2+y+\dfrac{1}{4}\right)-\dfrac{9}{4}\)\(=\left(2x+1\right)^2+5\left(y+\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)

Vậy Min C = \(\dfrac{9}{4}\) khi \(\left\{{}\begin{matrix}2x+1=0\\y+\dfrac{1}{2}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\)

9 tháng 8 2021

A= 4(x-2)^2 - 9 >= -9

Min A=-9 khi x=2

B= 9(x+1/3)^2 +3 >=3

Min B=3 khi x= -1/3

22 tháng 7 2017

bài 2:

a)\(A=16x^2-8x+3\)

\(=\left[\left(4x\right)^2-2.4x.1+1^2\right]-1+3\)

\(=\left(4x-1\right)^2+2\)

ta thấy: \(\left(4x-1\right)^2\ge0\)

\(\left(4x-1\right)^2+2\ge2\)

vậy GTNN của A là 2 khi \(x=\dfrac{1}{4}\)

b) \(B=19-6x-9x^2\)

\(=-\left[\left(3x\right)^2+2.3x.1+1^2\right]+19\)

\(=-\left(3x-1\right)^2+19\)

ta thấy: \(-\left(3x-1\right)^2\le0\)

\(-\left(3x-1\right)^2+19\le19\)

vậy GTLN của B là 19 khi \(x=\dfrac{1}{3}\)

a) Ta có: \(A=x^2-5x+11\)

\(=x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}+\frac{19}{4}\)

\(=\left(x-\frac{5}{2}\right)^2+\frac{19}{4}\)

Ta có: \(\left(x-\frac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{5}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)

Dấu '=' xảy ra khi \(x-\frac{5}{2}=0\)

hay \(x=\frac{5}{2}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2-5x+11\)\(\frac{19}{4}\) khi \(x=\frac{5}{2}\)

b) Ta có: \(B=\left(x-3\right)^2+\left(x-11\right)^2\)

\(=x^2-6x+9+x^2-22x+121\)

\(=2x^2-28x+130\)

\(=2\left(x^2-14x+65\right)\)

\(=2\left(x^2-14x+49+16\right)\)

\(=2\left(x-7\right)^2+32\)

Ta có: \(\left(x-7\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-7\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-7\right)^2+32\ge32\forall x\)

Dấu '=' xảy ra khi x-7=0

hay x=7

Vậy: Giá trị nhỏ nhất của biểu thức \(B=\left(x-3\right)^2+\left(x-11\right)^2\) là 32 khi x=7