cho tam giac ABC vuông tai A có AH vuông góc với BC tại H
a) c/m AB2=AC.BH ; AC2=BC.HC
b)AH2=HB.HC
c) AB.AC=BC.AH
d) \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAHC vuông tại H và ΔDHC vuông tại H có
CH chung
HA=HD(gt)
Do đó: ΔAHC=ΔDHC(hai cạnh góc vuông)
b) Ta có: AH=HD(gt)
mà H nằm giữa A và D(gt)
nên H là trung điểm của AD
Xét ΔDAK có
H là trung điểm của AD(gt)
C là trung điểm của KD(gt)
Do đó: HC là đường trung bình của ΔDAK(Định nghĩa đường trung bình của tam giác)
Suy ra: HC//AK và \(HC=\dfrac{AK}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay AK//BC(đpcm)
a, Xét t/g AHC và t/g DHC có:
AH = DH (gt)
góc AHC = góc DHC = 90 độ
HC chung
=> t/g AHC = t/g DHC (c.g.c) (đpcm)
b, Áp dụng định lí pytago vào t/g ABC vuông tại A ta có:
AB2 + AC2 = BC2
=> AC2 = BC2 - AB2 = 102 - 62 = 64 = 82
=> AC = 8 (cm)
c, Xét t/g AHB và t/g DHE có:
AH = DH (gt)
góc AHB = góc DHE (đối đỉnh)
BH = EH (gt)
=> t/g AHB = t/g DHE (c.g.c) (đpcm)
=> góc HBA = góc DEH (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> AB // DE
Mà AB _|_ AC
=> DE _|_ AC (đpcm)
d, Vì t/g AHC = t/g DHC (câu a) => AC = CD (2 cạnh tương ứng) (1)
Xét t/g AHB và t/g AHE có:
BH = BE (gt)
góc AHB = góc AHE = 90 độ
AH chung
=> t/g AHB = t/g AHE (c.g.c)
=> AB = AE (2 cạnh tương ứng) (2)
Xét t/g ABC có: AB + AC > BC (BĐT tam giác) (3)
Từ (1),(2),(3) => AE + CD > BC (đpcm)
sử dụng đồng dạng và các câu sau có thể dựa vào các câu trc thay vào và chứng minh nha