Tìm nhiệm nguyên
2x-xy+4x-2y-2=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(6x-xy-2y=4\)
\(\Leftrightarrow x\left(6-y\right)+2\left(6-y\right)=16\)
\(\Leftrightarrow\left(6-y\right)\left(x+2\right)=16\)
\(\Leftrightarrow6-y=\frac{16}{x+2}\)
\(\Leftrightarrow6-\frac{16}{x+2}=y\)( x khác -2)
Vì x,y nguyên nên để y nguyên thì \(x+2\inƯ\left(16\right)=\left\{\pm1;2;\pm4;\pm8;\pm16\right\}\)
x+2 | x | y |
1 | -1 | -10 |
-1 | -3 | 22 |
2 | 0 | -2 |
4 | 2 | 2 |
-4 | -6 | 10 |
8 | 6 | 4 |
-8 | -10 | 8 |
16 | 14 | 5 |
-16 | -18 | 7 |
Kết luận:......
\(x^2-4x+2y-xy+9=0\)
\(\Leftrightarrow x^2-4x+4+2y-xy+5=0\)
\(\Leftrightarrow\left(x-2\right)^2-\left(x-2\right)y+5=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2-y\right)=-5\)
⇒\(\left[{}\begin{matrix}\left(x-2\right)\left(x-2-y\right)=-5\cdot1\left(1\right)\\\left(x-2\right)\left(x-2-y\right)=-1\cdot5\left(2\right)\end{matrix}\right.\)
Vì đề kêu tìm nghiệm nguyên nên ta có
Th1:\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=-5\\x-2-y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=1\\x-2-y=-5\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-3\\y=-6\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\y=6\end{matrix}\right.\end{matrix}\right.\)
Th2:\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=-1\\x-2-y=5\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=5\\x-2-y=-1\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=-6\end{matrix}\right.\\\left\{{}\begin{matrix}x=7\\y=6\end{matrix}\right.\end{matrix}\right.\)
Vậy .....
5x2+2y+y2-4x-40=0
△=(-4)2-4.5.(2y+y2-40)
△=16-40y-20y2+800
△=-(784+40y+20y2)
△=-(32y+8y+16y2+4y2+16+4+764)
△=-[(4y+4)2+(2y+2)2+764]<0
=>PHƯƠNG TRÌNH VÔ NGHIỆM.
a) \(xy+3x-2y-7=0\)
\(\Leftrightarrow x\left(y+3\right)-2y-6=1\)
\(\Leftrightarrow\left(x-2\right)\left(y+3\right)=1\)
mà \(x,y\)nguyên nên \(x-2,y+3\)là ước của \(1\)nên ta có bảng giá trị:
x-2 | 1 | -1 |
y+3 | 1 | -1 |
x | 3 | -1 |
y | -2 | -4 |
Vậy phương trình có nghiệm là: \(\left(3,-2\right),\left(-1,-4\right)\).
b) \(5y-2x^2-2y^2+2=0\)
\(\Leftrightarrow16x^2+16y^2-40y-16=0\)
\(\Leftrightarrow\left(4x\right)^2+\left(4y-5\right)^2=41\)
Vì \(x,y\)nguyên nên \(\left(4x\right)^2,\left(4y-5\right)^2\)là các số chính phương.
Phân tích \(41\)thành tổng hai số chính phương có cách duy nhất bằng \(41=16+25\)
mà \(\left(4x\right)^2⋮16\)nên ta có:
\(\hept{\begin{cases}\left(4x\right)^2=16\\\left(4y-5\right)^2=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=0\end{cases}}\)(vì \(y\)nguyên)