Tìm x,y thuộc:
|x - 40| + |x -y +10| =0
GIÚP mik vs mn ơi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Rightarrow\left(x^3+27\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x^2-2x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x\left(x-2\right)=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=0\\x=2\end{matrix}\right.\)
Vậy \(x\in\left\{-3;0;2\right\}\)
\(2\left(x^2-x\right)-x\left(x+2\right)+4=0\)
\(\Leftrightarrow2x^2-2x-x^2-2x+4=0\)
\(\Leftrightarrow x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy \(S=\left\{2\right\}\)
Ta có: \(\left(x-1\right)^{2020}\ge0\forall x\)
\(\left|y-3\right|\ge0\forall y\)
Do đó: \(\left(x-1\right)^{2020}+\left|y-3\right|\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
Vậy: (x,y)=(1;3)
\(\Leftrightarrow x-\left[3-x+3+x-2\right]=0\)
=>x=4
Có \(\frac{x}{y}=\frac{7}{10}\Rightarrow\frac{x}{7}=\frac{y}{10}\) . Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x}{7}=\frac{y}{10}=\frac{x+y}{7+10}=\frac{34}{17}=2\) . Từ đó ta suy ra được
\(\Rightarrow x=2.7=14\) \(\Rightarrow y=2.10=20\)
Ta có: \(\hept{\begin{cases}|x-40|\ge0;\forall x,y\\|x-y+10|\ge0;\forall x,y\end{cases}}\)
\(\Rightarrow|x-40|+|x-y+10|\ge0;\forall x,y\)
Do đó: \(|x-40|+|x-y+10|=0\)
\(\Leftrightarrow\hept{\begin{cases}|x-40|=0\\|x-y+10|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=40\\y=50\end{cases}}\)