K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2019

a ) Tam giác ABC cân tại A => AB = AC và \(\widehat{ABC}=\widehat{ACB}\)

=> \(\widehat{B}=\frac{180^o-\widehat{A}}{2}\)                                   ( 1 )

Ta có : AB = AD + BD

           AC = AE + CE

Mà AB = AC , BD = CE 

=> AD = AE

=> Tam giác ADE cân tại A

=> \(\widehat{ADE}=\frac{180^o-\widehat{A}}{2}\)                      ( 2 )

Từ ( 1 ) và ( 2 ) => \(\widehat{B}=\widehat{ADE}\)

Mà 2 góc này ở vị trí đồng vị 

=> DE // BC

b ) Xét \(\Delta ABE\)và \(\Delta ACD\)có :

AB = AC ( do tam giác ABC cân tại A )

\(\widehat{A}\) là góc chung

AD = AE ( do tam giác ADE cân tại A )

=> \(\Delta ABE=\Delta ACD\)( c.g.c )

c ) Xét \(\Delta DBC\)và \(\Delta ECB\)có :

BD = CE ( gt )

\(\widehat{DBC}=\widehat{ECB}\)( do tam giác ABC cân tại A )

BC là cạnh chung

=> \(\Delta DBC=\Delta ECB\)( c.g.c )

=> \(\widehat{DCB}=\widehat{EBC}\)

=> Tam giác IBC cân tại I

=> IB = IC

Xét \(\Delta AIB\)và \(\Delta AIC\)có :

AI là cạnh chung

AB = AC ( do tam giác ABC cân tại A )

IB = IC ( cmt )

=> \(\Delta AIB=\Delta AIC\)( c.c.c)

=> \(\widehat{BAI}=\widehat{CAI}\)

=> AI là tia p/g của góc A

14 tháng 6 2023

giúp m v :(

a: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

b: Xét ΔABE và ΔACD có

AB=AC

góc A chung

AE=AD

=>ΔABE=ΔACD

c: Xét ΔIDB và ΔIEC có

góc IDB=góc IEC

DB=EC

góc IBD=góc ICE

=>ΔIDB=ΔIEC

d: Xét ΔABI và ΔACI có

AB=AC

BI=CI

AI chung

=>ΔABI=ΔACI

=>góc BAI=góc CAI

=>AI là phân giác của góc BAC

a) ta có tam giác abc là tam giác cân

=> AD=AC

MÀ  BD=CE  (1)

=>AD=AE(2)

Từ 1 và 2 suy ra DE là đường TB 

=> DE=1/2BC

=> DE//BC (đccm)

sửa lại 

=>AB=AC

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD = DEb )...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0
8 tháng 7 2016

A B K C D E

a) Xét \(\Delta ABE\) và \(\Delta ACD\)

có: + AE=AD(gt)

       +A: là góc chung

        +AB=AC(do \(\Delta ABC\) cân tại A)

Vậy \(\Delta ABE\)=\(\Delta ACD\) (c.g.c)

=> BE=CD( 2 cạnh tương ứng)

b) Vì \(\Delta ABE\) =\(\Delta ACD\) (cmt)

nên: góc ABE=góc ACD( 2 góc tương ứng)

c) .\(\Delta KBC\) cân tại K

. Ta có: góc B = \(B_1+B_2\)

                     C=\(C_1=C_2\)

                     B=C(gt);\(B_1=C_1\) (cmt)

=> \(B_2=C_2\)

Do đó \(\Delta KBC\) cân tại K

8 tháng 7 2016

có bạn nào giải được bài này ko giúp mk với khocroi huhuhu

25 tháng 7 2023

a) Ta có : BD=CE (đề bài)

mà AB=AD+BD; AC=AE+CE; AB=AC (Δ ABC cân tại A)

⇒ AD=AE

⇒ Δ ADE là Δ cân tại A

⇒ Góc ADE = Góc AED

\(\Rightarrow\widehat{DAE}+\widehat{2ADE}=180^O\)

mà \(\widehat{BAC}+\widehat{2ABC}=180^O\) (Δ ABC cân tại A)

\(\Rightarrow\widehat{ADE}=\widehat{ABC}\) ở vị trí đồng vị

Tương tự ta CM \(\widehat{AED}=\widehat{ACB}\) cũng ở vị trí đồng vị

\(\Rightarrow DE//BC\)

b) Xét Δ ABE và Δ ACD ta có :

AB=AC (Δ ABC cân tại A)

Góc A chung

AD=AE (cmt)

⇒ Δ ABE = Δ ACD (cạnh, góc, cạnh)

c) Ta có DE song song BC (cmt)

mà Góc DBC = Góc ECA (Δ ABC cân tại A)

⇒ BDEC là hình thang cân

Xét Δ BID và Δ CIE ta có :

\(\widehat{BDC}=\widehat{DCE}\) (đồng vị)

BD=CE (đề bàI)

BE=CD (BDEC là hình thang cân)

⇒ Δ BID = Δ CIE (cạnh, góc, cạnh)

d) Ta có: AD=AE (cmt)

mà DI=IE (Δ BID = Δ CIE)

⇒ AI là đường trung trực của DE

mà Δ ADE cân tại A (cmt)

⇒ AI là tia phân giác góc BAC

e) Ta có : Δ ABC cân tại A (đề bài)

mà AI là tia phân giác góc BAC (cmt)

⇒ AI là đường cao

⇒ AI vuông góc BC.