K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2019

yeuyeu

13 tháng 8 2019
https://i.imgur.com/WBXskL5.jpg
26 tháng 10 2019

cần gấp lắm hộ mình

20 tháng 7 2019

A B C D C D

23 tháng 5 2015

A B C D O a b c d

+) Dễ có tam giác OAB đồng dạng với tam giác ODC (góc AOB = DOC do đối đỉnh; góc BAC = BDC do góc nội tiếp cùng chắn cung BC)

=> \(\frac{OA}{OD}=\frac{OB}{OC}=\frac{AB}{DC}=\frac{a}{c}\)

+) Tương tự, tam giác OAD đồng dạng với tam giác OBC (g - g)

=> \(\frac{OA}{OB}=\frac{OD}{OC}=\frac{AD}{BC}=\frac{b}{d}\) 

+) Ta có: \(\frac{OB}{OC}+\frac{OD}{OC}=\frac{a}{c}+\frac{b}{d}=\frac{ad+bc}{cd}\)=> \(\frac{OB+OD}{OC}=\frac{BD}{OC}=\frac{ad+bc}{cd}\Rightarrow\frac{OC}{BD}=\frac{cd}{ad+bc}\) (1)

+) ta có: \(\frac{OA}{OD}=\frac{a}{c};\frac{OA}{OB}=\frac{b}{d}\Rightarrow\frac{OD}{OA}=\frac{c}{a};\frac{OB}{OA}=\frac{d}{b}\)

=> \(\frac{OD}{OA}+\frac{OB}{OA}=\frac{BD}{OA}=\frac{c}{a}+\frac{d}{b}=\frac{bc+ad}{ab}\Rightarrow\frac{OA}{BD}=\frac{ab}{bc+ad}\)(2)

Từ (1)(2) => \(\frac{OC}{BD}+\frac{OA}{BD}=\frac{cd+ab}{ad+bc}\Rightarrow\frac{AC}{BD}=\frac{ab+cd}{ad+bc}\)

 

 

16 tháng 8 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vẽ AH ⊥ (BCD) tại H, ta có CD ⊥ AH và vì CD ⊥ AB ta suy ra CD ⊥ BH. Tương tự vì BD ⊥ AC ta suy ra BD ⊥ CH

Vậy H là trực tâm của tam giác BCD tức là DH ⊥ BC

Vì AH ⊥ BC nên ta suy ra BC ⊥ AD

Cách khác: Trước hết ta hãy chứng minh hệ thức:

Giải sách bài tập Toán 11 | Giải sbt Toán 11 

với bốn điểm A, B, C, D bất kì.

Thực vậy , ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó nếu AB ⊥ CD nghĩa là

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ hệ thức (4) ta suy ra 

Giải sách bài tập Toán 11 | Giải sbt Toán 11 ,

do đó AD ⊥ BC.

17 tháng 3 2019

A B C D O I F E G E'

Gọi đường tròn (BIC) cắt BD trại G khác B. Trên đoạn AD lấy E' sao cho AE' = AF.

Xét \(\Delta\)AIF và \(\Delta\)AIE': AF = AE', ^IAF = ^IAE', AI chung => \(\Delta\)AIF = \(\Delta\)AIE' (c.g.c) => IF = IE' 

Xét (BIC): ^FBG nội tiếp, BI là phân giác ^FBG, I thuộc (BIC) => (IF = (IG => IF = IG. Từ đó IG = IE'

Dễ thấy: ^IE'A = ^IFA (Do \(\Delta\)AIF = \(\Delta\)AIE') => ^IFB = ^IE'D hay ^IE'D = ^IGD

Từ đó: ^GID = ^E'ID (Vì ^IDE' = ^IDG), kết hợp với IG = IE', cạnh ID chung => \(\Delta\)DGI = \(\Delta\)DE'I (c.g.c)

Suy ra: DG = DE'. Ta lại có: ^CAB = ^CDB; ^CFB = ^CGB => ^FCA = ^GCD

Xét \(\Delta\)CFA và \(\Delta\)CGD: CA = CD; ^CAF = ^CDG; ^FCA = ^GCD => \(\Delta\)CFA = \(\Delta\)CGD (g.c.g)

=> AF = DG. Mà DG = DE' nên AF = DE'. Do đó: DE' = AE' => E' là trung điểm AD => E' trùng E

Như vậy AE = AF và IF = IE suy ra AI là trung trực của EF hay AI vuông góc EF (đpcm),

7 tháng 12 2017

Giải bài 6 trang 119 sgk Hình học 11 | Để học tốt Toán 11

Gọi I, K lần lượt là trung điểm của cạnh AB và CD

Qua K kẻ đường thẳng d // AB, trên d lấy A', B' sao cho K là trung điểm của A'B' và

KA' = IA

* Xét tam giác CKB’ và DKA’ có:

KC= KD ( giả thiết)

KB’= KA’( cách dựng)

Giải bài 6 trang 119 sgk Hình học 11 | Để học tốt Toán 11 ( hai góc đối đỉnh )

=> ∆ CKB’ = ∆ DKA’ ( c.g.c)

=> B’C = A’D

*Xét tứ giác IBB’K có IB= KB’ và IB // KB’ ( cách dựng)

=> Tứ giác IBB’K là hình bình hành

=> BB’ // IK (1)

Chứng minh tương tự, ta có: AA’// IK (2)

Từ (1) và (2) suy ra: BB’// IK// AA’ (*)

Giải bài 6 trang 119 sgk Hình học 11 | Để học tốt Toán 11

Lại có:IK ⊥ CK

=> IK ⊥ (CKB') (**)

Từ (*) và (**) suy ra BB' ⊥ (CKB') ; AA' ⊥ (CKB')

⇒ BB' ⊥ B'C; AA' ⊥ A'D

* Xét hai tam giác vuông BCB’ và ADA’ có:

BB’ = AA’ (= IK)

CB’ = A’D (chứng minh trên)

=> ∆ BCB’ = ∆ ADA’ ( cạnh huyền –cạnh góc vuông)

=> BC= AD.

* Chứng minh tương tự, AC = BD

31 tháng 3 2017

Giải bài 6 trang 119 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 6 trang 119 sgk Hình học 11 | Để học tốt Toán 11