TÌM GIÁ TRỊ LỚN NHẤT CỦA
C=3lxl+2/4lxl-5
GIÚP MÌNH VỚI ĐỂ MAI MÌNH NỘP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x^2+15}{x^2+3}=\frac{x^2+3}{x^2+3}+\frac{12}{x^2+3}=1+\frac{12}{x^2+13}\)
ĐỂ A ĐẠT GTLN <=> \(\frac{12}{x^2+3}\)ĐẠT GTLN <=> \(x^2+3\)PHẢI ĐẠT GTNN
XÉT \(\frac{12}{x^2+3}\)CÓ: \(x^2\ge0\Rightarrow x^2+3\ge3\)DẤU "=" XẢY RA <=> \(x=0\)
TẠI x=0 => \(\frac{12}{x^2+3}=\frac{12}{3}=4\)
=> MaxA=1+4=5 khi x=0
x=3/2 thì biểu thúc đạt giá trị lớn nhất là 6,5
x=0 thì biểu thức C là số tự nhiên
Với mọi x thì A= |x+5/8 | \(\ge\)0 .
Dấu ''='' xảy ra khi và chỉ khi x+5/8= o \(\Leftrightarrow\)x= -5/8.
Vậy GTNN (A)= 0 khi x= -5/8.
Ta có:
\(A=\left|x+\frac{5}{8}\right|\ge0\)
Dấu "=" xảy ra khi và chỉ khi x = -5/8
Vậy Min A = 0 khi và chỉ khi x = -5/8
\(a.\) Vì: \(\left|x+5\right|\ge0\) \(\forall x\)
\(\Rightarrow1000-\left|x+5\right|\le1000\) \(\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow1000-\left|x+5\right|=1000\)
\(\Leftrightarrow\left|x+5\right|=1000-1000\)
\(\Leftrightarrow\left|x+5\right|=0\)
\(\Leftrightarrow x+5=0\)
\(\Leftrightarrow x=0-5\)
\(\Leftrightarrow x=-5\)
\(b.\) Vì: \(\left|x+5\right|\ge0\) \(\forall x\)
\(\Rightarrow\left|x+5\right|-1000\ge-1000\) \(\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow\left|x+5\right|-1000=-1000\)
\(\Leftrightarrow\left|x+5\right|=-1000+1000\)
\(\Leftrightarrow\left|x+5\right|=0\)
\(\Leftrightarrow x+5=0\)
\(\Leftrightarrow x=0-5\)
\(\Leftrightarrow x=-5\)
\(B=\frac{10n-3}{4n-10}\)
\(=\frac{\frac{5}{2}.\left(4n-10\right)+22}{4n-10}=\frac{5}{2}+\frac{22}{4n-10}\)
B đạt gtr lớn nhất khi \(\frac{22}{4n-10}\)là số dương lớn nhất
=> 4n - 10 là số dương nhỏ nhất mà n là stn.
=> 4n - 10 = 2 = > n = 3
\(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì: \(-\left(x-\frac{1}{2}\right)^2\le0\)
=> \(-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Vậy GTLN của B là \(\frac{1}{4}\) khi \(x=\frac{1}{2}\)
Xét biểu thức \(\left(3x+4\right)^4-5\). Có \(\left(3x+4\right)^4\) có số mũ chẵn
\(\left(3x+4\right)^4\ge0\) hay giá trị nhỏ nhất của \(\left(3x+4\right)^4=0\)
Từ đó có giá trị nhỏ nhất của \(\left(3x+4\right)^4-5=0-5=-5\)
Vậy giá trị nhỏ nhất của biểu thức \(\left(3x+4\right)^4-5\) là \(-5\)