a) Cho xy=5. Chứng minh: x2+y2>9,999
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : (x-y)^2 >= 0
<=> x^2-2xy+y^2>=0
<=> x^2+y^2 >= 2xy = 2.5 = 10 > 9,999
=> x^2+y^2 >= 9,999
a) x<y
<=> x.x<x.y
<=> x\(^2\)<xy
x<y
<=> x.y<y.y
<=>xy<y\(^2\)
b) áp dụng kết quả từ câu a và tính chất bắc cầu, ta có:
x\(^2\)<xy<y\(^2\)
<=> x\(^2\)<y\(^2\)
x\(^2\)<y\(^2\)
=> x\(^2\).y<y\(^2\).y
<=> x\(^2\)y<y\(^3\)(1)
x\(^2\)<y\(^2\)
=> x\(^2\).x<y\(^2\).x
<=> x\(^3\)<xy\(^2\)(2)
x<y
<=> x.xy<y.xy
<=> x\(^2\)y<xy\(^2\)(3)
Từ (1),(2) và (3) ta có
x\(^3\)<y\(^3\)
CMR: \(\frac{1}{x}+\frac{1}{y}\le2\) biết \(^{x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0}\) và xy>0
bài này ko dùng cô-si nhé, đề chỉ cho x,y là số thực và thỏa mãn \(xy\ge1\) chứ ko nói j đến dương, tham khảo bài lm của mk nhé:
BÀI LÀM
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
\(\Leftrightarrow\)\(\frac{1}{1+x^2}-\frac{1}{1+xy}+\frac{1}{1+y^2}-\frac{1}{1+xy}\ge0\)
\(\Leftrightarrow\)\(\frac{1+xy-1-x^2}{\left(1+x^2\right)\left(1+xy\right)}+\frac{1+xy-1-y^2}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\)\(\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+x^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\) \(\frac{x\left(y-x\right)\left(1+y^2\right)}{\left(1+x^2\right)\left(1+xy\right)\left(1+y^2\right)}+\frac{y\left(x-y\right)\left(1+x^2\right)}{\left(1+xy\right)\left(1+y^2\right)\left(1+x^2\right)}\ge0\)
\(\Leftrightarrow\)\(\frac{\left(y-x\right)\left(x+xy^2-y-x^2y\right)}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)
\(\Leftrightarrow\)\(\frac{\left(y-x\right)\left(x-y\right)\left(1-xy\right)}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)
\(\Leftrightarrow\)\(\frac{\left(x-y\right)^2\left(xy-1\right)}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)
đến đây bn tự giải thích và làm tiếp nhé
CÁCH 2: \(VT=\frac{1}{1+x^2}+\frac{1}{1+y^2}=\frac{2+x^2+y^2}{1+y^2+x^2+x^2y^2}\)
Ta luôn có: \(\left(a-b\right)^2\ge0\) \(\Leftrightarrow\)\(a^2-2ab+b^2\ge0\)\(\Leftrightarrow\)\(a^2+b^2\ge2ab\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b\)
Áp dụng BĐT trên ta có: \(x^2+y^2\ge2xy\) mà \(xy\ge1\) nên \(x^2+y^2\ge2\)
\(xy\ge1\) \(\Rightarrow\)\(\left(xy\right)^2=x^2y^2\ge1\)
Khi đó: \(VT=\frac{1}{1+x^2}+\frac{1}{1+y^2}=\frac{1+x^2+y^2}{1+x^2+y^2+x^2y^2}\ge\frac{2xy+1}{2xy+1+1}\ge\frac{2+2}{2xy+2}=\frac{4}{2\left(xy+1\right)}=\frac{2}{1+xy}\)
\(\Rightarrow\)\(VT\ge\frac{2}{1+xy}\)hay \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\) (đpcm)
x y + ( 1 + x 2 ) ( 1 + y 2 ) = 1 ⇔ ( 1 + x ) 2 ( 1 + y ) 2 = 1 − x y ⇒ ( 1 + x 2 ) ( 1 + y 2 ) = 1 - x y 2 ⇔ 1 + x 2 + y 2 + x 2 y 2 = 1 − 2 x y + x 2 y 2 ⇔ x 2 + y 2 + 2 x y = 0 ⇔ x + y 2 = 0 ⇔ y = − x ⇒ x 1 + y 2 + y 1 + x 2 = x 1 + x 2 − x 1 + x 2 = 0
Do 1 số chính phương khi chia cho 3 chỉ có thể có số dư là 0 hoặc 1 nên nếu \(x,y⋮̸3\) thì \(z^2=x^2+y^2\equiv1+1\equiv2\left[3\right]\), vô lí. Vậy trong 2 số x, y phải tồn tại 1 số chia hết cho 3.
Tương tự, một số chính phương khi chia cho 4 chỉ có thể có số dư là 0 hoặc 1 nên nếu \(x,y⋮̸4\) thì \(z^2=x^2+y^2\equiv1+1\equiv2\left[4\right]\), vô lí. Vậy trong 2 số x, y phải có 1 số chia hết cho 4.
Từ 2 điều trên, kết hợp với \(\left(4,3\right)=1\), thu được \(xy⋮3.4=12\). Ta có đpcm.
\(x^2+y^2+1\ge xy+x+y\)
\(\Leftrightarrow2x^2+2y^2+2\ge2xy+2x+2y\)
\(\Leftrightarrow2x^2+2y^2+2-2xy-2x-2y\ge0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(x^2-2xy+y^2\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2\ge0\left(đúng\right)\)
rút gọn P=2/x-(x2/(x2-xy)+(x2-y2)/xy-y2/(y2-xy)):(x2-xy+y2)/(x-y)
r tìm gt P với |2x-1|=1 ; |y+1|=1/2
\(x^2+y^2\ge2\sqrt{\left(xy\right)^2}=10>9,999\)