K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2022

a) Xét ΔABD vàΔ HAD có:

     \(\widehat{DAB}\) =\(\widehat{AHB}\)= 90o( gt)

         \(\widehat{D}\) chung

⇒Δ ABD ∼ ΔHAD(g-g)

b) Áp dụng định lí Py-ta-go vào Δ ABD vuông tại A ta có:

   BD=\(\sqrt{AD^2+AB^2}\)=\(\sqrt{3^2+4^2}\)=\(\sqrt{25}\)=5(cm)

Theo câu a ta có:Δ ABD ∼ ΔHAD

\(\dfrac{BD}{AD}\)=\(\dfrac{AD}{HD}\)hay \(\dfrac{5}{3}\)=\(\dfrac{3}{HD}\)⇒HD=\(\dfrac{3.3}{5}\)=1,8 (cm)

 

 

a: Xét ΔABD vuông tại A và ΔHAD vuông tại H có

góc ADH chung

Do đó: ΔABD\(\sim\)ΔHAD

b: \(BD=\sqrt{3^2+4^2}=5\left(cm\right)\)

\(HD=\dfrac{AD^2}{BD}=1.8\left(cm\right)\)

Sửa đề: đường cao BH

a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có

góc C chung

=>ΔBDC đồng dạng với ΔHBC

b: \(BD=\sqrt{25^2-15^2}=20\left(cm\right)\)

HC=15^2/25=9cm

HD=25-9=16cm

a: Xét ΔADH vuông tại H và ΔDBC vuông tại C có 

\(\widehat{ADH}=\widehat{DBC}\)

Do đó: ΔADH∼ΔDBC

Xét ΔABD vuông tại A có AH là đường cao

nên \(AD^2=HD\cdot BD\)

b: \(BD=\sqrt{12^2+9^2}=15\left(cm\right)\)

\(HD=\dfrac{AD^2}{BD}=\dfrac{9^2}{15}=5.4\left(cm\right)\)

=>HB=9,6(cm)

12 tháng 5 2021

a) Xét tam giác AHB và tam giác BCD ta có:

AHB = BCD (=90^0)

ABH = BDC (AB // CD và 2 góc slt)

=> Tam giác AHB đồng dạng với tam giác BCD (G-G)

b) Tam giác BCD vuonng tại C. Áp dụng Pitago ta tính được BD = 15cm

Tam giác AHB đồng dạng với tam giác BCD (G-G)

\(\Rightarrow\dfrac{AH}{BC}=\dfrac{AB}{BD}\Rightarrow\dfrac{AH}{9}=\dfrac{12}{15}\)

=> AH = 7,2 cm

c) Tam giác AHB vuông tại H. Áp dụng Pitago ta tính được  HB = 9,6cm

\(S_{AHB}=\dfrac{1}{2}AH.HB=\dfrac{1}{2}.7,2.9,6=34,56\left(cm^2\right)\)

a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có

góc C chung

Do đo: ΔBDC\(\sim\)ΔHBC

b: \(BD=\sqrt{10^2-6^2}=8\left(cm\right)\)

\(HC=\dfrac{BC^2}{CD}=\dfrac{6^2}{10}=3.6\left(cm\right)\)

HD=10-3,6=6,4(cm)

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

góc ABH=góc BDC

=>ΔAHB đồng dạng với ΔBCD

b: BD=căn 9^2+12^2=15cm

AH=9*12/15=108/15=7,2cm
c: Xét ΔHAD có HN/HA=HP/HD

nên NP//AD và NP=AD/2

=>NP//BC và NP=BC/2

=>NP//BM và NP=BM

=>BNPM là hình bình hành

c: Xét ΔABD có DF là phân giác

nên FA/FB=AD/DB(1)

Xét ΔADH có DE là phân giác

nên EH/EA=DH/DA(2)

Ta có: \(AD^2=DB\cdot DH\)

nên AD/DB=DH/DA(3)

Từ (1), (2) và (3) suy ra EH/EA=FA/FB

1 tháng 3 2022

Sai chỗ n?