Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADH vuông tại H và ΔDBC vuông tại C có
\(\widehat{ADH}=\widehat{DBC}\)
Do đó: ΔADH∼ΔDBC
Xét ΔABD vuông tại A có AH là đường cao
nên \(AD^2=HD\cdot BD\)
b: \(BD=\sqrt{12^2+9^2}=15\left(cm\right)\)
\(HD=\dfrac{AD^2}{BD}=\dfrac{9^2}{15}=5.4\left(cm\right)\)
=>HB=9,6(cm)
c: Xét ΔABD có DF là phân giác
nên FA/FB=AD/DB(1)
Xét ΔADH có DE là phân giác
nên EH/EA=DH/DA(2)
Ta có: \(AD^2=DB\cdot DH\)
nên AD/DB=DH/DA(3)
Từ (1), (2) và (3) suy ra EH/EA=FA/FB
a) Xét ΔABD vàΔ HAD có:
\(\widehat{DAB}\) =\(\widehat{AHB}\)= 90o( gt)
\(\widehat{D}\) chung
⇒Δ ABD ∼ ΔHAD(g-g)
b) Áp dụng định lí Py-ta-go vào Δ ABD vuông tại A ta có:
BD=\(\sqrt{AD^2+AB^2}\)=\(\sqrt{3^2+4^2}\)=\(\sqrt{25}\)=5(cm)
Theo câu a ta có:Δ ABD ∼ ΔHAD
⇒\(\dfrac{BD}{AD}\)=\(\dfrac{AD}{HD}\)hay \(\dfrac{5}{3}\)=\(\dfrac{3}{HD}\)⇒HD=\(\dfrac{3.3}{5}\)=1,8 (cm)
a: Xét ΔABD vuông tại A và ΔHAD vuông tại H có
góc ADH chung
Do đó: ΔABD\(\sim\)ΔHAD
b: \(BD=\sqrt{3^2+4^2}=5\left(cm\right)\)
\(HD=\dfrac{AD^2}{BD}=1.8\left(cm\right)\)
Hình vẽ bị lỗi. Bạn thông cảm!
a) Xét \(\Delta\)KBA và \(\Delta\)CDB có:
^BKA = ^DCB = 90 độ
^KBA = ^CDB ( so le trong )
=> \(\Delta\)KBA ~ \(\Delta\)CDB (g-g)
b) Xét \(\Delta\)ADB có:
\(S\left(ADB\right)=\frac{1}{2}AD.AB=\frac{1}{2}AK.BD\)(1)
mà AB = 8cm ; AD = BC = 6cm ( ABCD là hình chữ nhật) ; BD = \(\sqrt{AD^2+AB^2}=\sqrt{6^2+8^2}=10\)(cm)
(1) => AD.AB = AK.BD => AK = 6.8 : 10 = 4,8 ( cm)
\(S\left(KBA\right)=\frac{1}{2}AK.KB\)
với KA = 4,8 cm và KB = \(\sqrt{AB^2-AK^2}=\sqrt{8^2-4,8^2}=6,4\)(cm)
=> \(S\left(KBA\right)=\frac{1}{2}AK.KB=\frac{1}{2}4,8.6,4=15,36\)(cm^2)
c) Áp dụng tính chất phân giác ta có:
\(\frac{BA}{BD}=\frac{FA}{FD};\frac{BK}{BA}=\frac{EK}{EA}\)(1)
Xét \(\Delta\)BAK và \(\Delta\)BDA có: ^BKA = ^BAD = 90 độ và ^B chung
=> \(\Delta\)BAK ~ \(\Delta\)BDA ( g-g)
-> \(\frac{BA}{BD}=\frac{BK}{BA}\)(2)
Từ (1); (2) => \(\frac{FA}{FD}=\frac{EK}{EA}\)=> EA.FA= EK.FD
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho
câu 2d
Ta có SR // AB mà AB ⊥ AD (gt) ⇒ SR ⊥ AD, lại có AH ⊥ SD (gt)
⇒ R là trực tâm của ΔSAD ⇒ DR là đường cao thứ ba nên DR ⊥ SA
Mà DR // ST (DRST là hình bình hành) ⇒ ST ⊥ SA
Vậy ∠AST = 90o
...
Chúc bạn học tốt
câu 1d
+ ΔACI có BF//CI→ FC/FA=OI/AO
IΔCOI có AJ//CI (//BF)→ CI/AJ=OI/AO
→FC/FA=CI/AJ
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Ta có: ΔAHB\(\sim\)ΔCAB(cmt)
nên \(\dfrac{AH}{CA}=\dfrac{HB}{AB}=\dfrac{AB}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AH}{8}=\dfrac{HB}{6}=\dfrac{6}{10}=\dfrac{3}{5}\)
Suy ra: \(\left\{{}\begin{matrix}\dfrac{AH}{8}=\dfrac{3}{5}\\\dfrac{HB}{6}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\HB=3.6\left(cm\right)\end{matrix}\right.\)
Vậy: AH=4,8cm; HB=3,6cm
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB(g-g)