K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2021

y = \(\sqrt[3]{\left(x^2+8\right)^2}-3\sqrt[3]{x^2+8}+1\)

Đặt \(\sqrt[3]{\left(x^2+8\right)}=t\)

Do x2 + 8 ≥ 8 với mọi x

⇒ t ≥ 2 với mọi x

y = t2 - 3t + 1

Min của hàm số đã cho là Min của y = g(t) = t2 - 3t + 1 trên [2 ; +\(\infty\))

g(t) đồng biến trên \(\left(\dfrac{3}{2};+\infty\right)\) nên nó đồng biến trên (2 ; +\(\infty\))

⇒ Giá trị nhỏ nhất của g(t) trên [2 ; +\(\infty\)) là g(2) = - 1