\(Cho\widehat{xOy}< 90^o.\)Lấy A và C thuộc Ox và B , D thuộc Oy sao cho OA < OC , OA =OB , OC = OD, Gọi M và N lần lượt là trung điểm của AB và CD. CMR :
a) OM là đường trung trực của AB.
b) AB // CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
OA = OB (gt)
=> Tam giác OAB cân tại O có OM là đường trung tuyến (M là trung điểm của AB)
=> OM là tia phân giác của xOy (1)
OM là đường trung trực của AB
OC = OD (gt)
=> Tam giác OCD cân tại O có ON là đường trung tuyến (N là trung điểm của CD)
=> ON là tia phân giác của xOy (2)
Từ (1) và (2)
=> \(OM\equiv ON\)
=> O, M, N thẳng hàng
OM _I_ AB (OM là đường trung trực của AB)
OM _I_ CD (ON là đường trung tuyến của tam giác OCD cân tại O)
=> AB // CD
xin lỗi bạn mình mệt quá từ nảy bấm muốn rụng hai cái tay luôn
a.Ta có: OD=OB+BD
OC=OA+AC
mà OA=OB; AC=BD
=>OD=OC
Xét 2 TG ODA và OCB;ta có:
OA-OB(gt); O:góc chung; OD=OC(cmt)
=>TG ODA= TG OCB(c.g.c)
=>AD=BC(2 cạnh tương ứng)
b. TG ODA=TG OCB=> góc C=góc D(2 góc tương ứng)
=>OAD=OBC(2 góc tương ứng)
Ta có: OAD+EAC=180o(kề bù) (1)
OBC+EBD=180o(kề bù) (2)
Từ (1) và (2)=> OAD+EAC=OBC+EBD=180o
mà OAD=OBC(cmt)=>EAC=EBD
Xét 2 TG EAC và EBD; ta có:
AC=BD(gt); C=D(cmt); EAC=EBD(cmt)
=>TG EAC=TG EBD (g.c.g)
a: Xét ΔOAD và ΔOCB có
OA=OC
góc AOD chung
OD=OB
=>ΔOAD=ΔOCB
=>AD=CB
b: Xét ΔEAB và ΔECD có
góc EAB=góc ECD
AB=CD
góc EBA=góc EDC
=>ΔEAB=ΔECD
c: Xét ΔOAE và ΔOCE có
OA=OC
AE=CE
OE chung
=>ΔOAE=ΔOCE
=>góc AOE=góc COE
=>góc AOM=góc CON
Xét ΔCON và ΔAOM có
góc CON=góc AOM
CO=AO
góc OCN=góc OAM
=>ΔCON=ΔAOM
=>ON=OM
=>ΔENM can tại E
=>EM=EN
=>NC=MA
Xét ΔEMB và ΔEND có
EM=EN
góc MEB=góc NED
EB=ED
=>ΔEMB=ΔEND
=>ND=MB và góc EMB=góc END
=>góc KMO=góc KNO
=>ΔKMN cân tại K
KD+DN=KN
KB+BM=KM
mà KM=KN; DN=BM
nên KD=KB
=>K nằm trên trung trực của DB(1)
OB=OD
nên O nằm trên trung trực của DB(2)
EB=ED
nên E nằm trên trung trực của DB(3)
Từ (1), (2), (3) suy ra O,E,K thẳng hàng
a: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{O}\) chung
OD=OB
Do đó: ΔOAD=ΔOCB
\(a,\left\{{}\begin{matrix}OA=OC\\OD=OB\\\widehat{AOB}\text{ chung}\end{matrix}\right.\Rightarrow\Delta AOD=\Delta COB\left(c.g.c\right)\\ \Rightarrow AD=BC\\ b,\Delta AOD=\Delta COB\\ \Rightarrow\widehat{ADO}=\widehat{CBO};\widehat{OAD}=\widehat{OCB}\\ \Rightarrow180^0-\widehat{OAD}=180^0-\widehat{OCB}\\ \Rightarrow\widehat{ECD}=\widehat{EAB}\\ \text{Ta có}\left\{{}\begin{matrix}OA=OC\\OD=OB\end{matrix}\right.\Rightarrow CD=OD-OC=OB-OA=AB\\ \left\{{}\begin{matrix}AB=CD\\\widehat{ADO}=\widehat{CBO}\\\widehat{ECD}=\widehat{EAB}\end{matrix}\right.\Rightarrow\Delta EAB=\Delta ECD\left(g.c.g\right)\)
a, \(\Delta OAB\)có \(AM=MB\left(đb\right)\)
\(\Rightarrow OM\)là đường trung tuyến
Mà \(\Delta OAB\)có \(OA=OB\left(đb\right)\)
\(\Rightarrow\Delta AOB\)cân tại O
\(\Rightarrow OM\)vừa là đường trung tuyến, vừa là đường trung trực ( đpcm)
\(b,\)CM tương tự \(ON\)là đường trung trực của \(\Delta OCD\)
\(\Rightarrow ON\perp CD\)
Mà \(OM\perp AB\)
\(\Rightarrow CD//AB\)\(\left(đpcm\right)\)