Tính
A = \(2^1+2^2+2^3+2^4+....+2^{2010}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6:
a2+b2=(a+b)2-2ab
<=> 2010 =36-2ab
<=>ab=-987
M=a3+b3
=(a+b)(a2-ab+b2)
=6(a2+987+b^2)
=6(2010+987)
=17982
A=(2009/2010).(2008/2010). ... . (-2010/2010)
Còn lại mình chịu
\(C=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
\(C=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{2011+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
\(C=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{1+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+....+\left(\frac{1}{2011}+1\right)}\)
\(C=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2012}{2012}+\frac{2012}{2}+\frac{2012}{3}+....+\frac{2012}{2011}}\)
\(C=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)}=\frac{1}{2012}\)
Cách 1:
A= 1+2-3-4+5+6-7-8+...+2006-2007-2008+2009+2010
A= (1+2-3-4)+(5+6-7-8)+...+(2005+2006-2007-2008) +2009 + 2010
Dãy số A đề cho ban đầu có số các số hạng là: (2010-1):1+1=2010. Trừ đi 2 số hạng thừa ta còn 2008 số hạng. Mà mỗi nhóm là một nhóm 4 số, vậy có tất cả 502 nhóm như vậy, mỗi nhóm là một tổng có kết quả bằng -4.
A= -4.502 + 2009 + 2010
A= -2008 + 2009 +2010
A= 2011
Cách 2:
A= 1+2-3-4+5+6-7-8+...+2006-2007-2008+2009+2010
A=(1+2-3)+(-4+5+6-7)+(-8+9+10-11)+...+(-2004+2005+2006-2007)+(-2008+2009+2010-2011)+2011
Mỗi nhóm là một số hạng có tổng bằng 0
A=2011
Cách 2 ngắn gọn hơn nha bạn! Chúc học tốt!
Trả lời
Tính
A = 21+22+23+24+....+22010
2A = 22 + 23 + 24 + ... + 22011
=> 2A - A = 22011 - 2
=> A = 22011 - 2
Vậy A = 22011 - 2
Study well
\(A=2^1+2^2+2^3+....+2^{2010}\)
\(2A=2^2+2^3+2^4+...+2^{2010}+2^{2011}\)
\(2A-A=2^{2011}-2\)
\(A=2^{2011}-2\)