Cho hình vuông ABCD có cạnh = a. M là một điểm bất kì. Chứng minh rằng: vecto u = 3 vecto MC - vecto MD - 2 vecto MA không đổi và tính độ dài của nó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\)
\(=\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\)
\(=4\overrightarrow{MO}+\left(\overrightarrow{OA}+\overrightarrow{OC}\right)+\left(\overrightarrow{OB}+\overrightarrow{OD}\right)=4\overrightarrow{MO}\)
(Do \(\overrightarrow{OA}=-\overrightarrow{OC};\overrightarrow{OB}=-\overrightarrow{OD}\))
\(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{MD}\)
\(\Leftrightarrow\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{MD}-\overrightarrow{MC}\)
\(\Leftrightarrow\overrightarrow{BM}+\overrightarrow{MA}=\overrightarrow{CM}+\overrightarrow{MD}\)
\(\Leftrightarrow\overrightarrow{BA}=\overrightarrow{CD}\) (luôn đúng do ABCD là hbh)
Vậy giả thiết ban đầu đúng hay \(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{MD}\)