K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

a, tự lm......

P=x2 / x-1

b, P<1

=> x2/x-1  <1

<=>x2/x-1 -1 <0

<=>x2-x+1 / x-1<0

Vi x2-x+1= (x -1/2 )2+3/4 >0

=> Để P<1

x-1 <0

x <1

c, x2/x-1 = x2-1+1/x-1

             = x+1 +1/x-1

               = 2 +(x-1) + 1/x-1

Áp dụng BDT Cô si ta có :

x-1  + 1/x-1 >hoặc = 2

=> P>= 3

Đầu = xảy ra <=> x=2( x >1)

Vay......

5 tháng 8 2017

làm đúng nhuwng phần c, phải >=4 cơ vì công cả 2 vế với 2 ta có P>=4

a, Đẻ \(P< 1\)thì : 

\(P=\left(\frac{x}{x+2}+\frac{x}{x-2}-\frac{2}{x^2-4}\right).\frac{x-2}{2x+2}< 1\)

\(=\left(\frac{x\left(x-2\right)\left(x^2-4\right)}{\left(x+2\right)\left(x-2\right)\left(x^2-4\right)}+\frac{x\left(x+2\right)\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)\left(x^2-4\right)}-\frac{2\left(x+2\right)\left(x-2\right)}{\left(x^2+4\right)\left(x+2\right)\left(x-2\right)}\right).\frac{x-2}{2x+2}\)

\(=\left(\frac{x\left(x-2\right)\left(x^2-4\right)+x\left(x+2\right)\left(x^2-4\right)-2\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)\left(x^2-4\right)}\right).\frac{x-2}{2x+2}\)

\(=\left(\frac{2x^4-10x^2+8}{x^4-8x^2+16}\right).\frac{x-2}{2x+2}=\left(2x^4-10x^2+8\right)\left(2x+2\right)=\left(x-2\right)\left(x^4-8x^2+16\right)\)

PT tương đương vs : \(\left(2x^4-10x^2+8\right)\left(2x+2\right)-\left(x-2\right)\left(x^4-8x^2+16\right)< 1\)

Khi đó pt trở thành : \(3x^5+6x^4-12x^3-36x^2+48< 1\)

Chắc vại đó == 

4 tháng 2 2020

\(ĐKXĐ:x\ne1\)

a) \(A=\left(1+\frac{x^2}{x^2+1}\right):\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right)\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\left[\frac{1}{x-1}-\frac{2x}{x\left(x^2+1\right)-\left(x^2+1\right)}\right]\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\left[\frac{1}{x-1}-\frac{2x}{\left(x^2+1\right)\left(x-1\right)}\right]\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{x^2+1-2x}{\left(x^2+1\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{\left(x-1\right)^2}{\left(x^2+1\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{x-1}{x^2+1}\)

\(\Leftrightarrow A=\frac{\left(2x^2+1\right)\left(x^2+1\right)}{\left(x^2+1\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{2x^2+1}{x-1}\)

b) Thay \(x=-\frac{1}{2}\)vào A, ta được :

\(A=\frac{2\left(-\frac{1}{2}\right)^2+1}{-\frac{1}{2}-1}\)

\(\Leftrightarrow A=\frac{\frac{3}{2}}{-\frac{3}{2}}\)

\(\Leftrightarrow A=-1\)

c) Để A < 1

\(\Leftrightarrow2x^2+1< x-1\)

\(\Leftrightarrow2x^2-x+2< 0\)

\(\Leftrightarrow2\left(x^2-\frac{1}{2}x+\frac{1}{16}\right)+\frac{15}{8}< 0\)

\(\Leftrightarrow2\left(x-\frac{1}{4}\right)^2+\frac{15}{8}< 0\)

\(\Leftrightarrow x\in\varnothing\)

Vậy để \(A< 1\Leftrightarrow x\in\varnothing\)

d) Để A có giá trị nguyên

\(\Leftrightarrow2x^2+1⋮x-1\)

\(\Leftrightarrow2x^2-2x+2x-2+3⋮x-1\)

\(\Leftrightarrow2x\left(x-1\right)+2\left(x-1\right)+3⋮x-1\)

\(\Leftrightarrow2\left(x+1\right)\left(x-1\right)+3⋮x-1\)

\(\Leftrightarrow3⋮x-1\)

\(\Leftrightarrow x-1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)

5 tháng 8 2018

\(a,ĐKXĐ:x\ne0;x\ne1\)

\(A=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)

\(A=\frac{x^2+x}{\left(x-1\right)^2}:\left[\frac{\left(x+1\right)\left(x-1\right)}{x\left(x-1\right)}+\frac{1}{x\left(x-1\right)}+\frac{2-x^2}{x^2-x}\right]\)

\(A=\frac{x^2+x}{\left(x-1\right)^2}:\left(\frac{x^2-1+1+2-x^2}{x^2-x}\right)\)

\(A=\frac{x^2+x}{\left(x-1\right)^2}:\frac{2}{x\left(x-1\right)}\)

\(A=\frac{x\left(x+1\right)}{\left(x-1\right)^2}.\frac{x\left(x-1\right)}{2}\)

\(A=\frac{x^2\left(x+1\right)}{2\left(x-1\right)}=\frac{x^3+x^2}{2x-2}\)