\(C=\left(\frac{1+x}{3-x}-\frac{1-2x}{3+x}-\frac{x-x^2}{9-x^2}\right):\frac{x}{x+3}\)
a)Rút gọn C
b)Tìm x để C>1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\left(\frac{2\sqrt{x}}{\sqrt{x}-3}+\frac{\sqrt{x}}{\sqrt{x}-3}+\frac{3x+3}{9-x}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}-3}-\frac{1}{2}\right)\) ĐK \(x\ge0;x\ne9\)
\(C=\left(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x+3}\right)}-\frac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\frac{2\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-3\right)}-\frac{1\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}-3\right)}\right)\)
\(C=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{2\left(\sqrt{x}-3\right)}\right)\)
\(C=\frac{-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{\sqrt{x}+1}{2\left(\sqrt{x}-3\right)}\)
\(C=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\) x \(\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}\)
\(C=\frac{-6}{\sqrt{x}+3}\)
b: ta có \(C=\frac{-6}{\sqrt{x}+3}\) mà \(C=\frac{1}{2}\)
\(\frac{-6}{\sqrt{x}+3}=\frac{1}{2}\)
\(-12=\sqrt{x}+3\)
\(\sqrt{x}=-15\)(Loại)
=> x không có giá trị nào để C=\(\frac{1}{2}\)
C = \(\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\)\(\left(\frac{-\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}-2}{\sqrt{x}+3}-\frac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)( \(x\ge0\) , \(x\ne9;4\))
= \(\frac{x-9-x+3\sqrt{x}}{x-9}\): \(\frac{9-x+\left(\sqrt{x}-2\right)^2-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
= \(\frac{3\sqrt{x}-9}{x-9}\): \(\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
= \(\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)\(:\frac{\sqrt{x}-2}{\sqrt{x}+3}\)
= \(\frac{3}{\sqrt{x}+3}.\frac{\sqrt{x}+3}{\sqrt{x}-2}\)
= \(\frac{3}{\sqrt{x}-2}\)
#mã mã#
\(A=\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right)\div\left(\frac{x^2-2x}{x^3-x^2+x}\right)\)
a) ĐKXĐ : \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)
\(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right)\div\left(\frac{x\left(x-2\right)}{x\left(x^2-x+1\right)}\right)\)
\(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right)\div\frac{x-2}{x^2-x+1}\)
\(=\left(\frac{x+1+x+1-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}\right)\times\frac{x^2-x+1}{x-2}\)
\(=\frac{-2x^2+4x}{\left(x+1\right)\left(x^2-x+1\right)}\times\frac{x^2-x+1}{x-2}\)
\(=\frac{-2x\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{-2x}{x+1}\)
b) \(\left|x-\frac{3}{4}\right|=\frac{5}{4}\)
<=> \(\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\left(loai\right)\\x=-\frac{1}{2}\left(nhan\right)\end{cases}}\)
Với x = -1/2 => \(A=\frac{-2\cdot\left(-\frac{1}{2}\right)}{-\frac{1}{2}+1}=2\)
c) Để A ∈ Z thì \(\frac{-2x}{x+1}\)∈ Z
=> -2x ⋮ x + 1
=> -2x - 2 + 2 ⋮ x + 1
=> -2( x + 1 ) + 2 ⋮ x + 1
Vì -2( x + 1 ) ⋮ ( x + 1 )
=> 2 ⋮ x + 1
=> x + 1 ∈ Ư(2) = { ±1 ; ±2 }
x+1 | 1 | -1 | 2 | -2 |
x | 0 | -2 | 1 | -3 |
Các giá trị trên đều tm \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)
Vậy x ∈ { -3 ; -2 ; 0 ; 1 }
a)\(P=\left[\frac{2}{\left(x+1\right)^3}.\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}.\left(\frac{1}{x^2}+1\right)\right]:\frac{x-1}{x^3}\left(ĐKXĐ:x\ne0;-1\right)\)
\(P=\left[\frac{2}{\left(x+1\right)^3}.\left(\frac{x+1}{x}\right)+\frac{1}{\left(x+1\right)^2}.\left(\frac{x^2+1}{x^2}\right)\right]:\frac{x-1}{x^3}\)
\(P=\left[\frac{2}{\left(x+1\right)^2x}+\frac{x^2+1}{\left[x\left(x+1\right)\right]^2}\right]:\frac{x-1}{x^3}\)
\(P=\left[\frac{x^2+2x+1}{\left[x\left(x+1\right)\right]^2}\right]:\frac{x-1}{3}\)
\(P=\frac{\left(x+1\right)^2}{x^2\left(x+1\right)^2}:\frac{x-1}{3}\)
\(P=\frac{3}{x^2\left(x-1\right)}\)
b)Bài này liên quan đến dấu lớn nên mk ko làm đc
ĐKXĐ : \(x\ne\pm3\)
a) \(A=\left(\frac{2x}{x-3}-\frac{x+1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\)
\(A=\left(\frac{-2x\left(3+x\right)}{\left(3-x\right)\left(3+x\right)}-\frac{\left(x+1\right)\left(3-x\right)}{\left(x+3\right)\left(3-x\right)}+\frac{x^2+1}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{x+3}{x+3}-\frac{x-1}{x+3}\right)\)
\(A=\left(\frac{-2x^2-6x+x^2-2x-3+x^2+1}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{x+3-x+1}{x+3}\right)\)
\(A=\left(\frac{-8x-2}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{4}{x+3}\right)\)
\(A=\frac{-2\left(4x+1\right)\left(x+3\right)}{\left(3-x\right)\left(3+x\right)4}\)
\(A=\frac{-\left(4x+1\right)}{2\left(3-x\right)}\)
\(A=\frac{4x+1}{2\left(x-3\right)}\)
b) \(\left|x-5\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}}\)
Mà ĐKXĐ x khác 3 => ta xét x = 7
\(A=\frac{4\cdot7+1}{2\cdot\left(7-3\right)}=\frac{29}{8}\)
c) Để A nguyên thì 4x + 1 ⋮ 2x - 3
<=> 4x - 6 + 7 ⋮ 2x - 3
<=> 2 ( 2x - 3 ) + 7 ⋮ 2x - 3
Mà 2 ( 2x - 3 ) ⋮ ( 2x - 3 ) => 7 ⋮ 2x - 3
=> 2x - 3 thuộc Ư(7) = { 1; -1; 7; -7 }
=> x thuộc { 2; 1; 5; -2 }
Vậy .....
a) ĐKXĐ: \(x\ne\pm3\)
\(A=\frac{2x\left(x+3\right)-\left(x+1\right)\left(x-3\right)-\left(x^2+1\right)}{x^2-9} : \frac{x+3-\left(x-1\right)}{x+3}\)
\(A=\frac{2x^2-6x-x^2+2x+3-x^2-1}{x^2-9} : \frac{4}{x+3}\)
\(A=\frac{-4x+2}{x^2+9} : \frac{4}{x+3}\)
\(A=\frac{2\left(1-2x\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{x+3}{4}=\frac{1-2x}{2x-6}\)
b)
Có 2 trường hợp:
T.Hợp 1:
\(x-5=2\Leftrightarrow x=7\)(thỏa mã ĐKXĐ)
thay vào A ta được: A=\(-\frac{13}{8}\)
T.Hợp 2:
\(x-5=-2\Leftrightarrow x=3\)(Không thỏa mãn ĐKXĐ)
Vậy không tồn tại giá trị của A tại x=3
Vậy với x=7 thì A=-13/8
c)
\(\frac{1-2x}{2x-6}=\frac{1-\left(2x-6\right)-6}{2x-6}=-1-\frac{5}{2x-6}\)
Do -1 nguyên, để A nguyên thì \(-\frac{5}{2x-6}\inℤ\)
Để \(-\frac{5}{2x-6}\inℤ\)thì \(2x-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Do 2x-6 chẵn, để x nguyên thì 2x-6 là 1 số chẵn .
Vậy không có giá trị nguyên nào của x để A nguyên
Đ e o o o o o = Đéo
Mk chỉ cần câu trả lời thôi nên đừng vào cmt bậy nha các bác ;)))