cho:a/b=b/c cmr:a/a-b=c/c-d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Xét \(VT=\frac{a+2b}{a-2b}=\frac{bk+2b}{bk-2b}=\frac{b\left(k+2\right)}{b\left(k-2\right)}=\frac{k+2}{k-2}\left(1\right)\)
Xét \(VP=\frac{c+2d}{c-2d}=\frac{dk+2d}{dk-2d}=\frac{d\left(k+2\right)}{d\left(k-2\right)}=\frac{k+2}{k-2}\left(2\right)\)
Từ (1) và (2) =>Đpcm
Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{2b}{2d}=\frac{a+2b}{c+2d}=\frac{a-2b}{c-2d}\)
\(\Rightarrow\frac{a+2b}{a-2b}=\frac{c+2d}{c-2d}\)(đpcm)
Áp dụng bđt cô si dạng engel cho 3 số dương:
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Vậy đẳng thức chỉ xảy ra khi a = b = c
Chúc bạn học tốt!
A+B
=a+b-5+b-c-9
=a+2b-c-14
C+D
=b-c-4-b+a
=-c+a-4
=>A+B<>C+D nha bạn
Ta có : a/b < c/d => ad < cb
=>ad +ab < bc+ab
=> a(d+b) < b(a+c)
=> a/b < a+c/d+b (1)
Ta có : a/b < c/d => ad<cb
=> ad + cd < cb +cd
=> d(a+c) < c(b+d)
=> c/d > a+c/b+d (2)
Từ (1) và (2) => a/b < a+c/b+d < c/d
TC: a/b=b/c
=>