Cho hình bình hành ABCD. Gọi E là trung điểm AD, F là trung điểm BC . Chứng minh rằng
a) \(\Delta ABE=\Delta CDF\)
b) Tứ giác DEBF là hình bình hành
c)Các đường thắng EF, BD và AC đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)tứ giác ABCD có:BF//ED(vì BC//AD) vàBF=ED(=1/2BC=1/2AD) =>DEBF là hbh.
b)gọi O là giao của 2 đường chéo BD, AC của hbh ABCD.
do đó O là trung điểm BD và AC.(1)
Lại có DEBF là hbh(cmt) => EF giao BD tại trung điểm O của BD.(2)
Từ (1) và(2) suy ra BD,AC và EF đòng quy tại trung điểm O của m,ỗi đường.
a ) Do ABCD là hình bình hành nên AB=CD và AD=BC
Xét \(\Delta ABE\) và \(\Delta CDF\) có :
\(AB=CD\)
\(AE=\frac{1}{2}AD=\frac{1}{2}BC=CF\)
\(\widehat{BAE}=\widehat{DCF}\)
Do đó hai tam giác trên bằng nhau
b,
Từ phần a suy ra \(BE=DF\)
Tứ giác DEBF có 2 cặp cạnh đối BE=DF và DE=BF nên DEBF là hình bình hành
c,
Do ABCD là hình bình hành nên AC và BD là hai đường chéo cắt nhau tại trung điểm mỗi đường
DEBF cũng là hình bình hành nên BD và FE là hai đường chéo cắt nhau tại trung điểm mỗi đường
Do đó AC,DB,FE đồng quy tại O là trung điểm mỗi đường
a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
a, Ta có:ABCD la hình bình hành=>AB=CD;AB//CD
mà E là trung diểm của AB;Flà trung điểm của CD
=>AE=EB=CF=DF(1)
VÌ AB//CD=>EB//DF(2)
Từ(1) và (2)=> EBFD là hình bình hành( theo dấu hiệu nhận biết hình bình hành)(đpcm)
b, Xét hbh ABCD có
AC cắt BD tại trung diểm củaAC và BD(1)
Xét hbh EBFD có EF cắt BD tại trung điểm của EF và BD(2)
từ (1) và (2)=>ba dường thang AC,BD,EF đồng quy
c,GỌI GIAO DIỂM CỦA AC,BD,EF LÀ O
Xét tam giác EOM và tam giác NOF có
góc EOM=góc NOF( đói đỉnh)
OE=OF(vi O là trung điểm cua EF)
goc MEF=góc NFE(vì CE//BF)
=>TAM GIAC EOM=TAMGIAC NOF
=.ME=NF(1)
TA CÓ ME//FN(2)
TU (1) VA(2)=>ENFM LA HBH
a) Vì ABCD là hình bình hành
=> AB = CD ( tính chất)
AD//BC
AB//CD
AD = BC ( tính chất)
BAD = BCD ( tính chất)
Vì E là trung điểm AD
=> AE = ED
Vì F là trung điểm BC
=> BF = FC
Mà AD = BC
AE = ED = BF = FC
Xét ∆ABE và ∆FCD ta có :
AB = CD
AE = BF (cmt)
BAD = FCD ( cmt)
=> ∆ABE = ∆FCD (c.g.c)
b) Vì E\(\in\)AD
F \(\in\)BC
Mà AD//BC
=> ED//BF
Mà ED = BF ( cmt)
=> EBFD là hình bình hành ( dấu hiệu nhận biết)
c) Vì ABCD là hình bình hành
=> AC và BD là 2 đường chéo cắt nhau tại trung điểm mỗi đường
Hay AC và BD cắt nhau tại trung điểm BD (1)
Vì EBCD là hình bình hành
=> BD và FE là 2 đường chéo cắt nhau tại trung điểm mỗi đường
Hay FE và BD cắt nhau tại trung điểm BD (2)
Từ (1) và (2) => AC , BD , FE cắt nhau tại trung điểm BD
=> AC,BD ,FE đồng quy