K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

A B D C E F O

a)tứ giác ABCD có:BF//ED(vì BC//AD) vàBF=ED(=1/2BC=1/2AD) =>DEBF là hbh.

b)gọi O là giao của 2 đường chéo BD, AC của hbh ABCD.

do đó O là trung điểm BD và AC.(1)

Lại có DEBF là hbh(cmt) => EF giao BD tại trung điểm O của BD.(2)

Từ (1) và(2) suy ra BD,AC và EF đòng quy tại trung điểm O của m,ỗi đường.

29 tháng 4 2020

a ) Do ABCD là hình bình hành nên AB=CD và AD=BC

Xét \(\Delta ABE\) và \(\Delta CDF\) có : 

\(AB=CD\)

\(AE=\frac{1}{2}AD=\frac{1}{2}BC=CF\)

\(\widehat{BAE}=\widehat{DCF}\)

Do đó hai tam giác trên bằng nhau

b,

Từ phần a suy ra \(BE=DF\)

Tứ giác DEBF có 2 cặp cạnh đối BE=DF và DE=BF nên DEBF là hình bình hành

c,

Do ABCD là hình bình hành nên AC và BD là hai đường chéo cắt nhau tại trung điểm mỗi đường

DEBF cũng là hình bình hành nên BD và FE là hai đường chéo cắt nhau tại trung điểm mỗi đường

Do đó AC,DB,FE đồng quy tại O là trung điểm mỗi đường

17 tháng 10 2023

a) Tam giác ABE= tam giác CDF

=> EB=DF

b) Ta có: 

\(\widehat{ABE}=\widehat{FCD}\)

\(\Rightarrow\widehat{EDF}=\widehat{EBF}=\widehat{BEA}\)

=> EB//CD mà ED//BF

=> EBFD là h.b.h

c) Gọi K là trung điểm EF

=> K là trung điểm AC, BD, EF

=> AC, BD, EF đồng quy tại K

15 tháng 11 2021

5. Vì tứ giác ABCD là hình bình hành (gt)

=> AD // BC ; AD = BC (tc)

Vì M là trung điểm AD (gt)

     N là trung điểm BC (gt)

     AD = BC (cmt)

=> AM = DM = BN = CN

Vì AD // BC mà M ∈ AD, N ∈ BC

=> MD // BN 

Xét tứ giác MBND có : MD = BN (cmt)

                                     MD // BN (cmt)

=> Tứ giác MBND là hình bình hành (DHNB)

=> BM = DN (tc hình bình hành)

     

15 tháng 11 2021

6. Vì tứ giác ABCD là hình bình hành (gt)

=> AB // CD ; AB = CD (tc)

Vì E là trung điểm AB (gt)

     F là trung điểm CD (gt)

     AB = CD (cmt)

=> AE = BE = DF = DF 

Vì AB // CD mà E ∈ AB, F ∈ CD

=> BE // DF 

Xét tứ giác DEBF có : BE = DF (cmt)

                                     BE // DF (cmt)

=> Tứ giác DEBF là hình bình hành (DHNB)

a) Vì ABCD là hình bình hành 

=> AB = CD ( tính chất) 

AD//BC 

AB//CD 

AD = BC ( tính chất) 

BAD = BCD ( tính chất) 

Vì E là trung điểm AD 

=> AE = ED 

Vì F là trung điểm BC 

=> BF = FC 

Mà AD = BC 

AE = ED = BF = FC

Xét ∆ABE và ∆FCD ta có : 

AB = CD 

AE = BF (cmt)

BAD = FCD ( cmt)

=> ∆ABE = ∆FCD (c.g.c)

b) Vì E\(\in\)AD 

\(\in\)BC 

Mà AD//BC 

=> ED//BF 

Mà ED = BF ( cmt)

=> EBFD là hình bình hành ( dấu hiệu nhận biết) 

c) Vì ABCD là hình bình hành 

=> AC và BD là 2 đường chéo cắt nhau tại trung điểm mỗi đường 

Hay AC và BD cắt nhau tại trung điểm BD (1)

Vì EBCD là hình bình hành 

=> BD và FE là 2 đường chéo cắt nhau tại trung điểm mỗi đường 

Hay FE và BD cắt nhau tại trung điểm BD (2)

Từ (1) và (2) => AC , BD , FE cắt nhau tại trung điểm BD 

=> AC,BD ,FE đồng quy

Không đc đâu

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Vì \(ABCD\) là hình bình hành (gt)

Suy ra \(AD = BC\); \(AD\) // \(BC\)

Mà \(E\), \(F\) là trung điểm của \(AD\), \(BC\) (gt)

Suy ra \(AE = ED = BF = FC\)

Xét tứ giác \(EBFD\) ta có:

\(ED = FB\) (cmt)

\(ED\) // \(BF\) (do \(AD\) // \(BC\))

Suy ra \(EDFB\) là hình bình hành

b) Vì \(ABCD\) là hình bình hành (gt)

Suy ra \(O\) là trung điểm của \(AC\) và \(BD\)

Mà \(DEBF\) là hình bình hành (gt)

Suy ra \(O\) cũng là trung điểm của \(EF\)

Suy ra \(E\), \(O\), \(F\) thẳng hàng

24 tháng 11 2021

ko biết

 

24 tháng 11 2021

cút mẹ mày đi

29 tháng 10 2021

a: Xét tứ giác DEBF có 

BE//DF

BE=DF

Do đó: DEBF là hình bình hành