Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5. Vì tứ giác ABCD là hình bình hành (gt)
=> AD // BC ; AD = BC (tc)
Vì M là trung điểm AD (gt)
N là trung điểm BC (gt)
AD = BC (cmt)
=> AM = DM = BN = CN
Vì AD // BC mà M ∈ AD, N ∈ BC
=> MD // BN
Xét tứ giác MBND có : MD = BN (cmt)
MD // BN (cmt)
=> Tứ giác MBND là hình bình hành (DHNB)
=> BM = DN (tc hình bình hành)
6. Vì tứ giác ABCD là hình bình hành (gt)
=> AB // CD ; AB = CD (tc)
Vì E là trung điểm AB (gt)
F là trung điểm CD (gt)
AB = CD (cmt)
=> AE = BE = DF = DF
Vì AB // CD mà E ∈ AB, F ∈ CD
=> BE // DF
Xét tứ giác DEBF có : BE = DF (cmt)
BE // DF (cmt)
=> Tứ giác DEBF là hình bình hành (DHNB)
a) Vì ABCD là hình bình hành
=> AB = CD ( tính chất)
AD//BC
AB//CD
AD = BC ( tính chất)
BAD = BCD ( tính chất)
Vì E là trung điểm AD
=> AE = ED
Vì F là trung điểm BC
=> BF = FC
Mà AD = BC
AE = ED = BF = FC
Xét ∆ABE và ∆FCD ta có :
AB = CD
AE = BF (cmt)
BAD = FCD ( cmt)
=> ∆ABE = ∆FCD (c.g.c)
b) Vì E\(\in\)AD
F \(\in\)BC
Mà AD//BC
=> ED//BF
Mà ED = BF ( cmt)
=> EBFD là hình bình hành ( dấu hiệu nhận biết)
c) Vì ABCD là hình bình hành
=> AC và BD là 2 đường chéo cắt nhau tại trung điểm mỗi đường
Hay AC và BD cắt nhau tại trung điểm BD (1)
Vì EBCD là hình bình hành
=> BD và FE là 2 đường chéo cắt nhau tại trung điểm mỗi đường
Hay FE và BD cắt nhau tại trung điểm BD (2)
Từ (1) và (2) => AC , BD , FE cắt nhau tại trung điểm BD
=> AC,BD ,FE đồng quy
a) Vì \(ABCD\) là hình bình hành (gt)
Suy ra \(AD = BC\); \(AD\) // \(BC\)
Mà \(E\), \(F\) là trung điểm của \(AD\), \(BC\) (gt)
Suy ra \(AE = ED = BF = FC\)
Xét tứ giác \(EBFD\) ta có:
\(ED = FB\) (cmt)
\(ED\) // \(BF\) (do \(AD\) // \(BC\))
Suy ra \(EDFB\) là hình bình hành
b) Vì \(ABCD\) là hình bình hành (gt)
Suy ra \(O\) là trung điểm của \(AC\) và \(BD\)
Mà \(DEBF\) là hình bình hành (gt)
Suy ra \(O\) cũng là trung điểm của \(EF\)
Suy ra \(E\), \(O\), \(F\) thẳng hàng
a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
a)tứ giác ABCD có:BF//ED(vì BC//AD) vàBF=ED(=1/2BC=1/2AD) =>DEBF là hbh.
b)gọi O là giao của 2 đường chéo BD, AC của hbh ABCD.
do đó O là trung điểm BD và AC.(1)
Lại có DEBF là hbh(cmt) => EF giao BD tại trung điểm O của BD.(2)
Từ (1) và(2) suy ra BD,AC và EF đòng quy tại trung điểm O của m,ỗi đường.
a ) Do ABCD là hình bình hành nên AB=CD và AD=BC
Xét \(\Delta ABE\) và \(\Delta CDF\) có :
\(AB=CD\)
\(AE=\frac{1}{2}AD=\frac{1}{2}BC=CF\)
\(\widehat{BAE}=\widehat{DCF}\)
Do đó hai tam giác trên bằng nhau
b,
Từ phần a suy ra \(BE=DF\)
Tứ giác DEBF có 2 cặp cạnh đối BE=DF và DE=BF nên DEBF là hình bình hành
c,
Do ABCD là hình bình hành nên AC và BD là hai đường chéo cắt nhau tại trung điểm mỗi đường
DEBF cũng là hình bình hành nên BD và FE là hai đường chéo cắt nhau tại trung điểm mỗi đường
Do đó AC,DB,FE đồng quy tại O là trung điểm mỗi đường