K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2017

\(A=\left(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\right)\left[\left(\frac{1}{\sqrt{a}-\sqrt{b}}-\frac{3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\right):\frac{a-b}{a+\sqrt{ab}+b}\right]\)

\(A=\left[\frac{a-\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\right].\left[\frac{a+b+\sqrt{ab}-3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}.\frac{a+\sqrt{ab}+b}{a-b}\right]\)

\(A=\left[\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\right].\left[\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}.\frac{1}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right]\)

\(A=\frac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}.\frac{1}{\sqrt{a}+\sqrt{b}}=\frac{1}{a-\sqrt{ab}+b}\)


Điều kiện : a, b\(\ge0\)

27 tháng 6 2020

ĐK: ab khác 1; a,b \(\ge\)0

\(B=\left(\frac{\sqrt{a}+\sqrt{b}}{1-\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{1+\sqrt{ab}}\right):\left(1+\frac{a+b+2ab}{1-ab}\right)\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(1+\sqrt{ab}\right)+\left(\sqrt{a}-\sqrt{b}\right)\left(1-\sqrt{ab}\right)}{\left(1-\sqrt{ab}\right)\left(1+\sqrt{ab}\right)}:\frac{1-ab+a+b+2ab}{1-ab}\)

\(=\frac{2\sqrt{a}+2\sqrt{b}\sqrt{ab}}{1-ab}:\frac{1+ab+a+b}{1-ab}\)

\(=\frac{2\sqrt{a}\left(1+b\right)}{1-ab}:\frac{\left(1+b\right)\left(1+a\right)}{1-ab}\)

\(=\frac{2\sqrt{a}}{1+a}\)

3 tháng 4 2020

a) P = \(\left(\frac{3\sqrt{a}}{a+\sqrt{a}+b}-\frac{3a}{a\sqrt{a}-b\sqrt{b}}+\frac{1}{\sqrt{a}-\sqrt{b}}\right):\frac{\left(a-1\right).\left(\sqrt{a}-\sqrt{b}\right)}{\left(2.a+2.\sqrt{ab}+2.b\right)}\)

        = \(\left(\frac{3\sqrt{a}.\left(\sqrt{a}-\sqrt{b}\right)-3.a+a+\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right).\left(a+\sqrt{ab}+b\right)}\right).\frac{2.\left(a+\sqrt{ab}+b\right)}{\left(a-1\right).\left(\sqrt{a}-\sqrt{b}\right)}\)

        \(\frac{a-2.\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}.\frac{2}{\left(a-1\right).\left(\sqrt{a}-\sqrt{b}\right)}\)

          = \(\frac{2}{a-1}\)

b) P nguyên <=> \(\frac{2}{a-1}\)nguyên => 2 \(⋮\)a - 1 

=> ( a- 1 ) = { \(\pm\)1 ; \(\pm\) 2} => a = { -1 ; 0 ; 2 ;3 } 

17 tháng 6 2020

A=(2+\(\frac{3+\sqrt{3}}{\sqrt{3}+1}\)) . (2-\(\frac{3-\sqrt{3}}{\sqrt{3}-3}\))

=(\(2+\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}\)) . (\(2-\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\))

=(\(2+\sqrt{3}\)) . (\(2-\sqrt{3}\))

=22-(\(\sqrt{3}\))2=4-3=1

B=(\(\frac{\sqrt{b}}{a-\sqrt{ab}}-\frac{\sqrt{a}}{\sqrt{ab}-b}\)) . (\(a\sqrt{b}-b\sqrt{a}\))

=(\(\frac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}\)) . (\(a\sqrt{b}-b\sqrt{a}\))

=(\(\frac{\sqrt{b}.\sqrt{b}}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}.\sqrt{a}}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\)). (a\(\sqrt{b}-b\sqrt{a}\))

=\(\frac{b-a}{\sqrt{ab}.\left(\sqrt{a}-\sqrt{b}\right)}.\left(\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\right)\)

=b-a

Ta có: \(A=\left(2+\frac{3+\sqrt{3}}{\sqrt{3}+1}\right)\cdot\left(2-\frac{3-\sqrt{3}}{\sqrt{3}-1}\right)\)

\(=\frac{2\left(\sqrt{3}+1\right)+3+\sqrt{3}}{\sqrt{3}+1}\cdot\frac{2\left(\sqrt{3}-1\right)-3+\sqrt{3}}{\sqrt{3}-1}\)

\(=\frac{2\sqrt{3}+2+3+\sqrt{3}}{\sqrt{3}+1}\cdot\frac{2\sqrt{3}-2-3+\sqrt{3}}{\sqrt{3}-1}\)

\(=\frac{3\sqrt{3}+5}{\sqrt{3}+1}\cdot\frac{3\sqrt{3}-5}{\sqrt{3}-1}\)

\(=\frac{2}{2}=1\)

5 tháng 10 2019

a/ \(\sqrt{ab}+\sqrt{a}-\sqrt{b}\)

b/ \(\sqrt{ab}+\sqrt{a}-\sqrt{b}=2\)

\(\Leftrightarrow\left(\sqrt{a}-1\right)\left(\sqrt{b}+1\right)=1\)

Xong rồi nhá