Thực hiện phép tính
1+3+5+…+2019−2−4−6−…−2018.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta có: \(16x+40=10\cdot3^2+5\left(1+2+3\right)\)
\(\Leftrightarrow16x+40=90+30\)
\(\Leftrightarrow16x=80\)
hay x=5
Bài 1:
$-1+2-3+4-5+6-7+8-...-2019+2020-2021$
$=(2+4+6+8+...+2020)-(1+3+5+...+2021)$
$=(\frac{2020-2}{2}+1).\frac{2020+2}{2}-(\frac{2021-1}{2}+1).\frac{2021+1}{2}=1021110- 1022121=-1011$
Bài 1 cách 2:
$A=-1+2-3+4-5+6-7+8-....-2019+2020-2021$
$=-1+(2-3)+(4-5)+(6-7)+....+(2020-2021)$
$=-1+\underbrace{(-1)+(-1)+...+(-1)}_{1010}=-1+(-1).1010=-1011$
a)-1-2-3-4-5-6-....-80
=(-1)+(-2)+(-3)+(-4)+(-5)+(-6)+...+(-80)
Khoảng cách giữa các số:(-1)-(-2)=1
Tổng các số hạng:(-1)-(-80)+1=80 số
Tổng:[(-1)+(-80)].80:2= -3240
=>-1-2-3-4-5-6+......-80=-3240
b,1-2+3-4+5-6+......+2021-2022
=(1-2)+(3-4)+(5-6)+...+(2021-2022)
=(-1)+(-1)+(-1)+...+(-1)
Tổng số cặp là:
(2022-1+1):2=1011 cặp
-1.1011=-1011
=>1-2+3-4+5-6+......+2021-2022= -1011
c, Đề bài sai
d,-4-8-12-16-.......-2020
=-4+(-8)+(-12)+(-16)+...+(-2020)
Khoảng cách giữa các số:-4-(-8)=4
Tổng các số hạng:[-4-(-2020]:4+1=505 số
Tổng:[-4+(-2020)].505:2=-511060
=>-4-8-12-16-.......-2020=-511060
1.
Đặt biểu thức là $A$
Ta thấy:
$\frac{1}{1+\sqrt{2}}=\frac{\sqrt{2}-1}{(1+\sqrt{2})(\sqrt{2}-1)}=\frac{\sqrt{2}-1}{2-1}=\sqrt{2}-1$
Tương tự với các phân số còn lại và công theo vế thì:
$A=(\sqrt{2}-1)+(\sqrt{3}-\sqrt{2})+...+(\sqrt{2019}-\sqrt{2018})$
$=\sqrt{2019}-1$
2.
$\sqrt{8-2\sqrt{15}}=\sqrt{5-2\sqrt{5.3}+3}+\sqrt{3-2\sqrt{3.1}+1}$
$=\sqrt{(\sqrt{5}-\sqrt{3})^2}+\sqrt{(\sqrt{3}-1)^2}$
$=|\sqrt{5}-\sqrt{3}|+|\sqrt{3}-1|$
$=\sqrt{5}-\sqrt{3}+\sqrt{3}-1=\sqrt{5}-1$
Ta có : \(2018.\left(\frac{1}{2017}-\frac{2019}{1009}\right)-2019.\left(\frac{1}{2017}-2\right)=\frac{2018}{2017}-2019.2-\frac{2019}{2017}+2019.2\)
\(=\frac{2018}{2017}-\frac{2019}{2017}=-\frac{1}{2017}\)
\(2018.\left(\frac{1}{2017}-\frac{2019}{1009}\right)-2019.\left(\frac{1}{2017}-2\right)\)
\(=\frac{2018}{2017}-2018.\frac{2019}{1009}-\frac{2019}{2017}+2019.2\)
\(=\frac{2018}{2017}-2.2019-\frac{2019}{2017}+2.2019\)
\(=\frac{2018}{2017}-\frac{2019}{2017}=-\frac{1}{2017}\)
\(=\left(1+3+5+...+2019\right)-\left(2+4+...+2018\right)\\ =\dfrac{\left(2019+1\right)\left[\left(2019-1\right):2+1\right]}{2}-\dfrac{\left(2018+2\right)\left[\left(2018-2\right):2+1\right]}{2}\\ =\dfrac{1020100}{2}-\dfrac{1019090}{2}=505\)